Abstract:
A method for generating service rules corresponding to business data is disclosed. A plurality of business related data is gathered from various sources. The data is combined using a subjective logic technique. The data is then evaluated for temporal patterns. Finally a set of service rules corresponding to the combined business data are developed.
Abstract:
A simulated neural circuit includes a plurality of simulated neurons. The simulated neurons have input branches that are configured to connect to a plurality of inputs and activate in response to activity in the inputs to which they are connected. In addition, the simulated neurons are configured to activate in response to activity in their input branches. Initial connections are formed between various input branches and various inputs and a set of the inputs are activated. Thereafter, the stability of connections between input branches and inputs to which they are connected is moderated based on the activated set of inputs and a pattern of activity generated in the input branches and simulated neurons in response to the activated set of inputs.
Abstract:
System, including method, apparatus, and computer-readable media, for evaluating client status for a likelihood of churn. Client data may be received, with the client data representing events from a set of different event types performed by clients. Parameters of a statistical model that describes client behavior may be estimated using a computer and based on the client data. A churn type of event may be encoded in the statistical model as an absorbing state of a stochastic process, with a time of transition to the absorbing state modeled as being infinite. At least one of the parameters may correspond to the churn type of event. A likelihood of churn may be calculated for a plurality of the clients at one or more time points using the statistical model and its estimated parameters.
Abstract:
Systems, methods and devices for modifying a patient adherence score which include, in one implementation, obtaining a patient profile in a patient population, the patient profile including multiple patient attributes and each patient attribute including a value; obtaining an adherence score for the patient profile for predicting patient adherence based on one or more of the multiple patient attributes wherein the adherence score indicates a likelihood of adherence of the patient to the prescribed treatment; and applying a modifier associated with an application to modify the adherence score obtained for the patient profile into a modified score for the application.
Abstract:
A system for customized prediction of a menstruation period or a fertility period is provided. The system includes a vital information measurer for measuring vital information about a user, a basic menstruation information generator for calculating the first day of menstruation or an ovulation day using the vital information received from the vital information measurer and outputting the first day of menstruation or the ovulation day as basic menstruation information, a menstruation cycle modeler having a menstruation cycle model representing a menstruation cycle as a function with a predetermined period, and a model parameter estimator for estimating and compensating a menstruation cycle parameter of the menstruation cycle model using the basic menstruation information received from the basic menstruation information generator.
Abstract:
Methods of classifying a subject's condition are described. The method includes: receiving measured signals from the subject; processing the measured signals using a computing device to identify a class associated with an identified condition of the subject; introducing an artificial class, the artificial class being associated with an unknown condition of the subject; classifying a feature vector from the subject into the identified class or the artificial class; and generating a signal in response to classifying the feature vector. The measured signals from the subject may include at least one signal extracted from brain activity of the subject.
Abstract:
Methods, systems, and apparatus, including computer program products, for determining a probability that a traffic conversion of a content item associated with a content source (e.g., website) will occur based on past traffic patterns for that content source. A traffic conversion defines, for example, minimum traffic interactions of one or more associated user sessions with a content source. The minimum traffic interactions can be based on, for example, the duration of the one or more user sessions on the content source, or a quantity of pages associated with the content source navigated in the one or more associated user sessions.
Abstract:
Systems and methods for extracting or analyzing time-series behavior are described. Some embodiments of computer-implemented methods include generating fuzzy rules from time series data. Certain embodiments also include resolving conflicts between fuzzy rules according to how the data is clustered. Some embodiments further include extracting a model of the time-series behavior via defuzzification and making that model accessible. Advantageously, to resolve conflicts between fuzzy rules, some embodiments define Gaussian functions for each conflicting data point, sum the Gaussian functions according to how the conflicting data points are clustered, and resolve the conflict based on the results of summing the Gaussian functions. Some embodiments use both crisp and non-trivially fuzzy regions and/or both crisp and non-trivially fuzzy membership functions.
Abstract:
A system that transforms information into fuzzy observable states. These states may be matched against a mapping table which indicates which observable state admits or excludes particular faults. This information may be processed over time when in each time instant the admitted or excluded faults are used for updating the rate for each fault.
Abstract:
Clock gating circuit is determined by transforming a clock gating opportunity function to a non-Boolean function and constraining inputs of the non-Boolean function. The non-Boolean function may be a ternary function. Constraining the inputs may be achieved by introducing control variables and a cardinality constraint associated with their values. The non-Boolean function may be utilized to approximate universal quantification of an input assigned with a non-Boolean value, such as “don't care” value. The non-Boolean function may be utilized to provide an ALL SAT solution of a Boolean function using a SAT solver.