Abstract:
A display device configured to display a selected image type, the image type including a first image and a second image, according to an image source signal, the display device including: a display unit, the display unit including a first group pixel and a second group pixel; and an image processor, the image processor: arranging image signals for each frame of the display device according to a display sequence of the first image and the second image in the first group pixel and the second group pixel, changing the image type displayed during a remaining period for each frame unit of the image source signal.
Abstract:
In a method of driving a display device and a driving circuit using the driving method, when a current needed to display an image corresponding to one frame is calculated based on a data signal, a second vertical start signal delayed by a first time interval more than a first vertical start signal based on the calculated current. A first gate signal is sequentially output in response to the first vertical start signal, and a display data voltage obtained from the data signal is output during a high period of the first gate signal. A second gate signal is sequentially output in response to the second vertical start signal, and a black data voltage is output during a high period of a second gate signal. Thus, the current applied to a display part is controlled, thereby reducing power consumption and improving moving image.
Abstract:
A method of driving a display device including a plurality of pixels, the method including transmitting a plurality of data signals to first group pixels during a first scan period, simultaneously emitting light through the first group pixels according to a programmed data signal during a first light emitting period adjacent to the first scan period, transmitting a plurality of data signals to second group pixels, different from the first group pixels, during a second scan period, and simultaneously emitting light through the second group pixels according to a programmed data signal during a second light emitting period adjacent to the second scan period. A first field including the first scan period and the first light emitting period and a second field including the second scan period and the second light emitting period are temporally divided.
Abstract:
In a display device, a signal controller compensates for luminance of an input image signal that corresponds to each of a plurality of pixels in accordance with a luminance compensation coefficient depending on a position of each pixel, and generates a compensation image signal. A data driver generates data signals that correspond to the plurality of pixels in accordance with the compensation image signal, and supplies the data signals to the corresponding pixels, respectively. The luminance compensation coefficient may depend on a magnitude of the input image signal.
Abstract:
An organic light emitting device including a first pixel, a second pixel and a third pixel displaying different colors from each other according to the present invention, the organic light emitting device includes a reflecting electrode and a translucent member forming a micro-cavity along with the reflecting electrode, wherein a optical path length is an interval between the reflecting electrode and the translucent member, and wherein the light path lengths of at least two pixels among the first pixel, the second pixel and the third pixel are the same.
Abstract:
A liquid crystal display is provided, which includes: a plurality of pixel row groups, each pixel row group including at least one pixel row that includes a plurality of pixels arranged in a matrix and including switching elements; a plurality of gate lines connected to the switching elements and transmitting a gate-on voltage for turning on the switching elements; and a plurality of data lines connected to the switching elements and transmitting data voltages, wherein the switching elements in adjacent pixel row groups are connected to the data lines at opposite sides.
Abstract:
An organic light emitting device according to an embodiment includes a thin film transistor substrate including a plurality of thin film transistors and an over-coating film formed on the thin film transistors. The over-coating film includes a curved surface on at least two pixels among pixels of different colors and the slope angles of depressed portions forming the curved surface are respectively different from each other depending on the colors of the pixels. A plurality of first electrodes formed on the over-coating film includes a surface formed according to the curved surface, an organic light emitting member formed on the first electrodes includes a surface formed according to the curved surface, and a second electrode formed on the organic light emitting member includes a surface formed according to the curved surface. Slope angles of the depressed portions increase according to a decrease of wavelengths of the colors of the pixels.
Abstract:
A liquid crystal display includes a plurality of subpixels respectively having switching elements and arranged in a matrix, a plurality of gate lines connected to the subpixels via the switching elements and transmitting a gate signal for turning on or off the switching elements, and a plurality of data lines connected to the subpixels via the switching elements and transmitting a data voltage. The respective subpixels are located in areas defined by two adjacent gate lines and two adjacent data lines, which are uniquely connected to a pair of gate line and data line, and at least one of the subpixels is connected to the different gate lines or the data line positioned at opposite side with respect to the other subpixel of the same row. In this case, a pair of subpixels adjacent above and below are connected to the gate line therebetween or the gate lines positioned at opposite side each other. In this way, any inversions for each color can be performed without changing conventional driving ICs.
Abstract:
An organic light emitting display according to an exemplary embodiment of the present invention includes a transistor arranged on an insulating substrate, a pixel electrode connected to the transistor and including a reflective film, an optical path controller arranged on the pixel electrode, an auxiliary electrode arranged on the pixel electrode and the optical path controller, an organic light emitting member arranged on the organic light emitting member, and a common electrode arranged on the organic light emitting member, wherein the optical path controller has a lower light absorption coefficient than the auxiliary electrode.
Abstract:
An organic light emitting device comprises: one or more first transflective members disposed on the substrate; one or more pixel electrodes disposed on the respective one or more first transflective members; one or more first organic light emitting members disposed on the respective one or more pixel electrodes; one or more second transflective members disposed on the respective one or more first organic light emitting members; one or more second organic light emitting members disposed on the respective second transflective members; and a common electrode disposed on the one or more second organic light emitting members. Other embodiments are also provided.