Abstract:
The disclosure describes load supporting stands and methods of supporting a load. Such systems and methods may include providing a load supporting stand with a column having an outer diameter, and a first end opposite a second end, a saddle attached to the first end of the column, a load bearing pin that extends transversely through the column and may be fixedly attached to the column, and a conduit capable of receiving the column, and a plurality of pin receiving slots disposed in the conduit and capable of receiving the pin, wherein the conduit may be capable of receiving the column and pin through the first end of the conduit, and wherein the column may be configured to be rotated within the conduit to translate upward from a top of the conduit such that the saddle engages the load to be supported.
Abstract:
An adaptor is provided for a jack assembly having a lifting jack carrying a horizontal plate for raising and lowering a heavy component supported by the jack assembly. The adaptor includes a horizontal support plate fastened to and vertically offset from the horizontal plate of the jack assembly by a height. A plurality of elongated arms is slidably mounted between the two plates to move in a generally horizontal plane. Each of arms includes a holding assembly configured to engage portions of the component supported on the support plate to stabilize the component as it is raised and lowered by the jack assembly. The arms are supported in the height between the two plates at different heights so that the arms are capable of a wide range of rotational and linear movements to adjust the position of the holding assembly of each arm relative to the heavy component.
Abstract:
A tester for a default mode of operation of an alternator is provided. The tester includes an internal memory having computer executable instructions and a processor coupled to the internal memory and to an alternator via a communication bus. The processor is configured to execute the computer executable instructions in the internal memory to provide at least one parameter associated with a vehicle to the alternator simulated as a communication signal over the communication bus, detect an absence of the communication signal at the alternator, test, upon detecting the absence of the communication signal, whether or not the alternator enters a default mode of operation, the default mode being indicated by a preset output voltage uniquely associated with the default mode and monitored by the processor, and indicate whether the alternator entered the default mode successfully.
Abstract:
A power providing station with integrated diagnostic functions is provided that includes the ability to charge or fuel a vehicle and perform various diagnostic functions. The various diagnostic functions such as tread depth measurement, battery testing, measuring tire pressures, performing safety inspection, emissions testing and performing vehicle diagnostics and the like may be performed while the vehicle is at the power providing station. The results of the diagnostic tests may be provided to the driver at the end of the charging or fueling via a wireless computing device.
Abstract:
An adaptor is provided for a jack assembly having a lifting jack carrying a horizontal plate for raising and lowering a heavy component supported by the jack assembly. The adaptor includes a horizontal support plate fastened to and vertically offset from the horizontal plate of the jack assembly by a height. A plurality of elongated arms is slidably mounted between the two plates to move in a generally horizontal plane. Each of arms includes a holding assembly configured to engage portions of the component supported on the support plate to stabilize the component as it is raised and lowered by the jack assembly. The arms are supported in the height between the two plates at different heights so that the arms are capable of a wide range of rotational and linear movements to adjust the position of the holding assembly of each arm relative to the heavy component.
Abstract:
A mounting bracket for a water cooled type alternator is provided. The mounting bracket includes a body, a plurality of bolts attached to the body, a plurality of pivot arms including a first pivot arm attached to a first bolt in the plurality of bolts at first end of the first pivot arm, and a link arm coupled to the body at a second bolt in the plurality of bolts.
Abstract:
A system that allows verified purchasers to communicate with each other and to post on a store's board. The system includes a server for the store which includes various applications that can interact with a wireless device or a connected vehicle. The user of the wireless device or the connected vehicle can use these devices to check-in with the store and become a verified purchaser. Once a verified purchaser, the user can communicate with other verified purchasers of the store.
Abstract:
A system for flaring an end of a fluid line includes a first and second adapter mountable on a first and second jaw of the gripping tool, respectively, and an arbor. Once mounted, the first and second adapters each have a working surface facing toward each other defining a channel half-profile. In a closed position, the working surfaces together form a channel from the half-profiles having a flare shape portion and a linear portion for receiving a fluid line in a non-slip fit. The working surface of one adapter has a U-shaped profile, and the other adapter is configured to be received therein. Each sidewall of the U-shaped profile defines a port opening into the channel. The arbor includes a die head that forms a flared end on a fluid line received in the channel as the arbor is inserted therein via the port.
Abstract:
An infrared (IR) temperature sensor includes a detector element, a wireless communication element, a memory, and a processor. The detector element detects IR radiation emitted from an object and generates an electrical signal proportional to the detected IR radiation. The memory is configured to store command instructions. The processor is operably connected to the detector element, the wireless communication element, and the memory. The processor is configured to execute the command instructions to transform the electrical signal into an output signal proportional to a temperature of the object and transmit the output signal with the wireless communication element. The IR sensor further includes a body that encloses the detector element, the wireless communication element, the memory, and the processor. The body defines an aperture that extends between the detector element and a mounting surface of the body and faces the object.
Abstract:
A vehicle maintenance system comprising an ECU and a port for interfacing with the ECU, the ECU configured to store diagnostic data related to the vehicle. The system further comprises a dongle configured to interface with the port to send data to the ECU and receive data from the ECU and a local device configured to communicate with the dongle and a remote computer, the local device comprising a display, a memory storing program instructions, and a processor configured to execute the program instructions to establish a communications link with the ECU via the dongle to allow the transfer of diagnostic data from the ECU to the local device, to allow the transfer of the diagnostic data from the local device to the remote computer and to receive data from the remote computer, such that the data received is used to perform a maintenance action on the vehicle.