Abstract:
An organic light emitting display apparatus is disclosed. The organic light emitting display apparatus includes: a substrate, a seal facing the substrate, bonded to the substrate, a display area disposed on the substrate configured to produce an image, a pad area disposed on the substrate, present on at least one side of the display area, an insulating layer directly extending from the display area, formed on the pad area, a first adhesive layer surrounding the display area, which bonds the substrate to the seal, and comprising an organic material, and a second adhesive layer insulated from the pad area by the insulating layer, disposed outside the first adhesive layer, which bonds the substrate to the seal.
Abstract:
A heterocyclic compound represented by Formula 1 below and an organic light-emitting device including the heterocyclic compound: wherein R1 to R13 are defined as in the specification.
Abstract:
An anode for an organic light emitting device which introduces a metal oxide to improve flows of charges, and an organic light emitting device using the anode. The anode for the organic light emitting device has excellent charge injection characteristics, thereby improving power consumption of the organic light emitting device.
Abstract:
An electrode, which includes a magnetic material to improve the flow of charges, and an organic light emitting device using the electrode. The electrode for the organic light emitting device has an excellent charge injection property, so that it is possible to improve the efficiency of light emission of the organic light emitting device.
Abstract:
An organic light emitting element includes a first electrode, a second electrode, and an organic layer. The organic layer includes a first emission layer between the first electrode and the second electrode, a second emission layer between the first emission layer and the second electrode, and an electron injection layer (EIL) between the first emission layer and the second emission layer, the electron injection layer (EIL) containing fullerene (C60).
Abstract:
A heterocyclic compound, organic light-emitting device, and a flat panel display device, the heterocyclic compound being represented by Formula 1 or 2 below:
Abstract:
The present invention is to provide an organic light emitting display and a method of manufacturing the same, the light emitting display including: a first substrate on which a plurality of light emitting devices are formed; a second substrate disposed to face the first substrate; a dam member disposed between the first substrate and the second substrate to surround the plurality of light emitting devices; an inorganic sealing material disposed between the first substrate and the second substrate on an outward side of the dam member and attaching the first substrate and the second substrate; and a filling material provided between the first substrate and the second substrate on an inward side of the dam member and formed of at least one inert liquid selected from the group consisting of perfluorocarbon and fluorinert.
Abstract:
A display apparatus includes a gate driver which sequentially outputs a gate signal at a high state in response to a gate control signal and a data driver which converts image data into a data signal in response to a data control signal. The display apparatus further includes a display panel which includes a plurality of gate lines which sequentially receive the gate signal, a plurality of data lines which receive the data signal and a plurality of pixels connected to the gate and data lines and which receive the data signal in response to the gate signal to display an image. The polarity of the data signal is inverted after the gate signal transitions to a low state.
Abstract:
An organic light emitting diode (OLED) display a includes: a substrate; an organic light emitting element on the substrate and including a first electrode, a light emission layer, and a second electrode; and an encapsulation layer on the substrate while covering the organic light emitting element. The encapsulation layer includes an organic layer and an inorganic layer. A mixed area, where organic materials forming the organic layer and inorganic materials forming the inorganic layer co-exist along a plane direction of the encapsulation layer, is formed at the boundary between the organic layer and the inorganic layer.