WEDGELET-BASED CODING CONCEPT
    103.
    发明申请

    公开(公告)号:US20190158838A1

    公开(公告)日:2019-05-23

    申请号:US16256128

    申请日:2019-01-24

    Abstract: Wedgelet-based coding for coding blocks of varying size is rendered more efficient by the usage of a variable length coded syntax element having a prefix and a suffix, wherein the size of the suffix is dependent on the prefix and the size of the current coding block. By this measure, it is feasible to efficiently adapt the length of the variable-length coded syntax element which controls the bi-partitioning of the current coding block to the actual needs, namely the size, of the current coding block, and the variability of the bi-partitioning by varying the wedglet separation line, respectively. The greater the current coding block is, the longer the variable-length coded syntax element may be. This length dependency may even be sufficiently effective in terms of coding efficiency so that the variable length coded syntax element may be coded without context-adaptive entropy coding, but directly or using fixed-equal-probability binary entropy coding.

    Transform coefficient coding
    104.
    发明授权

    公开(公告)号:US10271068B2

    公开(公告)日:2019-04-23

    申请号:US15948085

    申请日:2018-04-09

    Abstract: An idea used herein is to use the same function for the dependency of the context and the dependency of the symbolization parameter on previously coded/decoded transform coefficients. Using the same function—with varying function parameter—may even be used with respect to different transform block sizes and/or frequency portions of the transform blocks in case of the transform coefficients being spatially arranged in transform blocks. A further variant of this idea is to use the same function for the dependency of a symbolization parameter on previously coded/decoded transform coefficients for different sizes of the current transform coefficient's transform block, different information component types of the current transform coefficient's transform block and/or different frequency portions the current transform coefficient is located within the transform block.

    Inter-component prediction
    106.
    发明授权

    公开(公告)号:US10237567B2

    公开(公告)日:2019-03-19

    申请号:US14875743

    申请日:2015-10-06

    Abstract: Reconstructing a second component signal relating to a second component of a multi-component picture from a spatially corresponding portion of a reconstructed first component signal and a correction signal derived from a data stream for the second component promises increased coding efficiency over a broader range of multi-component picture content. By including the spatially corresponding portion of the reconstructed first component signal into the reconstruction of the second component signal, any remaining inter-component redundancies/correlations present such as still present despite a possibly a priori performed component space transformation, or present because of having been introduced by such a priori performed component space transformation, for example, may readily be removed by way of the inter-component redundancy/correlation reduction of the second component signal.

    Entropy encoding and decoding scheme

    公开(公告)号:US10224953B2

    公开(公告)日:2019-03-05

    申请号:US15717579

    申请日:2017-09-27

    Abstract: Decomposing a value range of the respective syntax elements into a sequence of n partitions with coding the components of z laying within the respective partitions separately with at least one by VLC coding and with at least one by PIPE or entropy coding is used to greatly increase the compression efficiency at a moderate coding overhead since the coding scheme used may be better adapted to the syntax element statistics. Accordingly, syntax elements are decomposed into a respective number n of source symbols si with i=1 . . . n, the respective number n of source symbols depending on as to which of a sequence of n partitions into which a value range of the respective syntax elements is sub-divided, a value z of the respective syntax elements falls into, so that a sum of values of the respective number of source symbols si yields z, and, if n>1, for all i=1 . . . n−1, the value of si corresponds to a range of the ith partition.

Patent Agency Ranking