Abstract:
Uplink requests for bandwidth and/or other types of communication resources are provided. In some embodiments, a communication device can access a mapping between quality of service (QoS) metrics and communication resources. The communication device can determined a value of the QoS (e.g., a guaranteed rate, a defined traffic priority, an amount of buffered data, etc.) and can determine a communication resource element using at least the mapping and the value of the QoS metric. The communication device also can configure an uplink request for communication resources based at least on the communication resource element. In addition, the communication device can send the uplink request.
Abstract:
Example methods disclosed herein for a station in a communication system include accessing a response frame received in response to a control frame transmitted to an access point. The response frame indicates a start time for a trigger frame to be transmitted by the access point to trigger the station to transmit an uplink transmission. Disclosed example methods also include controlling a receiver of the station to receive the trigger frame at the indicated start time. Example methods disclosed herein for an access point in a communication system include transmitting a response frame to a station in response to a control frame received from the station. The example response frame indicates a start time for a trigger frame to be transmitted by the access point to trigger the station to transmit an uplink transmission. Disclosed example methods also include transmitting the trigger frame at the indicated start time.
Abstract:
Apparatuses, computer readable media, and methods for indicating a resource allocation are disclosed. An apparatus of a high-efficiency wireless local area network (HEW) master station is disclosed. The HEW master station includes circuitry configured to generate a resource allocation for HEW stations, where the resource allocation includes a group identification and an index into a table. The circuitry is further configured to transmit the resource allocation to the HEW stations. The table may be a permutation table that indicates a sub-channel of a bandwidth for each of the HEW stations. The HEW master station may be configured to operate in accordance with orthogonal frequency division multi-access (OFDMA). The resource allocation may be part of a trigger frame that includes a duration for an uplink or downlink transmission opportunity, and the circuitry may be further configured to transmit data to the HEW stations in accordance with the resource allocation.
Abstract:
Apparatuses, methods, and computer readable media for resource allocation are disclosed. A high-efficiency wireless local-area network (HEW) master station is disclosed. The HEW master device may include circuitry configured to generate one or more resource allocations for each station of a plurality of stations. Each resource allocation may include an address of a corresponding station, a channel index to indicate a channel of a plurality of pre-defined channels of a bandwidth, and a sub-channel index to indicate the sub-channel bandwidth. If the sub-channel bandwidth is less than 20 MHz, each resource allocation includes a sub-channel location to indicate a sub-channel out of the multiple sub-channels of the indicated sub-channel bandwidth. The one or more resource allocations may be for a transmission opportunity in case of non-contiguous resource allocations for a single station. The circuitry may be further configured to operate in accordance with orthogonal frequency division multiple access (OFDMA).
Abstract:
Embodiments of an access point (AP), station (STA) and method of sounding are generally described herein. The AP may transmit, during a transmission opportunity (TXOP), a trigger frame (TF) to indicate that an STA is to transmit an uplink sounding packet during an uplink sounding period of the TXOP. The AP may attempt to detect the uplink sounding packet during the uplink sounding period. If the uplink sounding packet is not detected during the uplink sounding period, the AP may transmit a recovery packet to cause other STAs to determine a busy condition during the uplink sounding period. If the uplink sounding packet is detected during the uplink sounding period, the AP may determine a channel estimate for the STA based at least partly on the uplink sounding packet.
Abstract:
Methods and apparatus for multi-destination wireless transmissions as disclosed. An example multi-destination transmitter includes a direction determiner to determine directions for wireless transmission of data to destination devices and a transmission handler to: select a subset of the destination devices that are associated with different ones of a plurality of antennas as indicated by the directions determined by the direction determiner; and transmit the data to the subset of the destination devices via the plurality of antennas.
Abstract:
Computing readable media, apparatuses, and methods for signaling for uplink sounding are disclosed. An apparatus is disclosed comprising processing circuitry. The processing circuitry may be configured to: decode a trigger frame comprising a resource unit (RU) allocation, and a spatial stream (SS) allocation for the first wireless device to transmit an uplink (UL) sounding signal, where the trigger frame include an indication that the trigger frame is for the UL sounding signal. The processing circuitry may be further configured to: determine a path loss based on the indication of the transmit power and a received power of the trigger frame at the first wireless device. The processing circuitry may be configured to: determine a transmit power for the UL sounding signal based on the path loss; and transmit the UL sounding signal in accordance with the RU allocation, the SS allocation, and the transmit power.
Abstract:
Methods, computer readable media, and wireless apparatuses are disclosed. The apparatuses including processing circuitry configured to: associate with a master station, decode a frame, where the frame comprises a first duration and a transmitter address and determine that the frame is an intra basic service set (Intra-BSS), an inter (Inter-BSS), or an unclassified frame, where the unclassified frame is the Intra-BSS frame or the Inter-BSS frame. The processing circuitry may be further configured to set an Intra-BSS network allocation vector (NAV) to the first duration if the first duration is longer than a current duration of the Intra-BSS NAV and the frame is determined to be the intra-BSS frame and set the second NAV to the first duration if the first duration is longer than a current duration of the second NAV and the frame is determined to be the inter-BSS frame or the unclassified frame.
Abstract:
Embodiments of an access point (AP), station (STA) and method for multi-user (MU) location measurement are generally described herein. The AP may contend for a transmission opportunity (TXOP) to obtain access to a channel. The AP may transmit a trigger frame (TF) to initiate a multi-user (MU) location measurement during the TXOP. The AP may receive service requests for the MU location measurement from a plurality of STAs. The AP may transmit an MU acknowledgement (ACK) frame that indicates reception of the service requests. The AP may receive, from the STAs, uplink sounding frames that include per-STA timing information for the service requests and the MU ACK frame. The STA may determine location measurements for the STAs based on the per-STA timing information included in the uplink sounding frames.
Abstract:
Methods, apparatuses, computer readable media for uplink transmission power control in a wireless network. An apparatus of a wireless device comprising processing circuitry is disclosed. The processing circuitry is configured to decode a trigger frame from an access point for an uplink communication, the trigger frame comprising an uplink resource allocation for the station, the uplink resource allocation including common information and per station information, the common information including an indication of a maximum receive power at the access point, the per station information comprising an identification of the station, and an indication of a resource unit (RU). The processing circuitry may be further configured to: encode an uplink (UL) physical layer convergence procedure (PLCP) protocol data unit (PPDU)(UL-PPDU) in accordance with the indication of the RU. The processing circuitry may be further configured to: determine a transmit power for the UL-PPDU based on the maximum receive power.