Abstract:
In the first charge amount acquisition operation, based on density of a plurality of toner images for measurement or based on a direct component of a developing current at the time of forming the plurality of toner images in addition to the density of the plurality of toner images for measurement, the charge amount acquisition section acquires a first toner charge amount that is a charge amount of toner included in the toner image for measurement. In the second charge amount acquisition operation, based on the toner density detected at the time of image formation and a relationship between the first toner charge amount and the toner density detected in the first charge amount acquisition operation, the charge amount acquisition section acquires a second toner charge amount that is a charge amount of the toner in the development device.
Abstract:
An image forming apparatus includes a storage unit and a charging amount acquisition unit. The charging amount acquisition unit forms a measurement toner image on the image carrier while changing the frequency of the alternating current voltage of the development bias, acquires a tilt of a measurement straight line representing a relationship between the change amount of the frequency and a density change amount of the measurement toner image based on the change amount of the frequency and a result of detecting density of the measurement toner image in the density detecting unit, and acquires the charging amount of the toner based on the acquired tilt of the measurement straight line and the reference information in the storage unit.
Abstract:
A developing device includes a developing roller and a layer thickness regulating member. The developing roller includes a fixed magnet and a sleeve. The layer thickness regulating member includes a regulating body portion and an upstream regulating portion, and the upstream regulating portion includes an upstream magnetic member and a nonmagnetic member. Developer is hardly strongly jammed in an area between a first magnetic field concentration point of the regulating body portion and a second magnetic field concentration point of the upstream regulating portion. Thus, even if the sleeve of the developing roller is rotated at a higher speed than before, the developer is stably regulated by the layer thickness regulating member.
Abstract:
A developing device includes a developing roller, a conveyor roller, a developer stirring unit and a development bias applying unit. The developing roller is arranged to face a photoconductive drum at a predetermined developing position and supplies the toner. The conveyor roller is arranged to face the developing roller at a predetermined facing position and supplies the developer to the developing roller. The development bias applying unit applies development biases to the first sleeve of the developing roller and the second sleeve of the conveyor roller during a developing operation of developing the electrostatic latent image on the photoconductive drum with the toner. The development bias applying unit applies the development biases such that a shifting electric field to move the toner on the first sleeve of the developing roller toward the second sleeve of the conveyor roller is formed at the facing position during the developing operation.
Abstract:
An image forming apparatus includes a rotator, a driving control portion, and a layer thickness control portion. The rotator conveys toner to contact position to an image carrying member, and supplies toner to the image carrying member at the contact position. The driving control portion controls rotation of the rotator so as to rotate the rotator during a developing period, and stop the rotation of the rotator after a set time has elapsed since an end of the developing period. The layer thickness control portion causes the rotator to carry toner by controlling a potential difference between a potential of the rotator and a predetermined potential so that toner on the rotator at the contact position has a first layer thickness during the developing period and has a second layer thickness while the rotation of the rotator is stopped, the second layer thickness being thicker than the first layer thickness.
Abstract:
In an image forming apparatus, a coating layer of each of a photoconductor drum and a collecting roller has been formed by a dipping method in which a base body of each of the photoconductor drum and the collecting roller is dipped in a liquid in a state where the base body is in a vertical attitude such that a first end of the base body faces down and a second end of the base body faces up. The collecting roller is supported in a state where the first end of the collecting roller base body and the second end of the drum base body face a same direction.
Abstract:
A developing roller includes a roller main body disposed to face, without contact, an outer circumferential surface of an image carrier. The roller main body includes an aluminum oxide thin film and a resin coat layer, the aluminum oxide thin film being formed on an outer circumferential surface of a base body that is made of a metal including aluminum, the resin coat layer being formed on a surface of the aluminum oxide thin film that has been subjected to a predetermined heating process, the resin coat layer being made of a resin material and having electric conductivity.
Abstract:
An image forming apparatus includes an image carrier, a developing device, a bias applying unit, a leak detecting unit, a bias controller and a leak detection controller. The developing device includes a magnetic roller and a developer layer. The bias applying unit applies development biases to the magnetic roller and the developing roller. The leak detecting unit detects a leak generated between the image carrier and the developing roller or a leak generated between the developing roller and the magnetic roller. The leak detection controller performs a leak detecting operation for detecting the value of an inter-peak voltage of the alternating current voltage of the development bias applied to the developing roller, at which the leak is generated, while changing the inter-peak voltage at a time different from that during the developing operation.
Abstract:
A developing device includes a housing, a stirring member, a developing unit body, a driving device, a detecting device, and a control device. The housing accommodates developer supplied from a supply means and including toner and carrier. The stirring member rotates in the housing to stir the developer. The developing unit body rotates in the housing to convey the developer toward an image carrying member from the stirring member and attaches the toner to the image carrying member. The driving device rotationally drive at least one of the stirring member and the developing unit body. The detecting device detects the torque of the driving device. The control device performs a recovery process of controlling the supply means to supply at least one of the carrier and the developer to an interior of the housing when a detection result of the detecting device has a value lower than a threshold value.
Abstract:
A developing device includes a housing, a developer carrier, a conveying member and a surface layer. The developer carrier carries a developer on a circumferential surface. The conveying member is rotatably arranged in a first conveying portion and conveys the developer in the first conveying direction and supplies the developer to the developer carrier. The surface layer is formed on a surface of a predetermined cylindrical base member. The surface layer is formed by an immersion method of immersing the base member in a predetermined immersion tank so that an axial direction of the base member extends along a vertical direction. A lower end side of the base member at the time of the immersion is arranged in an upstream side of the housing and an upper end side of the base member at the time of the immersion is arranged in a downstream side of the housing.