摘要:
A uniprocessor that can run multiple threads (programs) simultaneously is achieved by use of a plurality of low-frequency minicore processors, each minicore for receiving a respective thread from a high-frequency cache and processing the thread. A superscalar processor may be used in conjunction with the uniprocessor to process threads requiring high throughput.
摘要:
A uniprocessor that can run multiple threads (programs) simultaneously is achieved by use of a plurality of low-frequency minicore processors, each minicore for receiving a respective thread from a high-frequency cache and processing the thread. A superscalar processor may be used in conjunction with the uniprocessor to process threads requiring high throughput.
摘要:
A multi-connect substrate, module including the substrate and an Integrated Circuit (IC) chip packaged in the module. The multi-connect substrate includes a multilayered substrate with at least one edge terminal array and one inboard terminal array on one face. An exterior terminal array is located on an opposite face. Signal wires pass through the multilayered substrate, connecting edge terminals to inboard terminals and inboard terminals with a exterior array terminals.
摘要:
A ferrule-less optical backplane connector assembly includes a substrate having at least a pair of optical guide receiving structures formed therein, the pair of optical guide receiving structures further being formed at substantially a right angle with respect to one another so as to guide a corresponding first and second optical guide into optical alignment with one another.
摘要:
A multi-prediction branch prediction mechanism predicts each conditional branch at least twice, first during the instruction-fetch phase of the pipeline and then again during the decode phase of the pipeline. The mechanism uses at least two different branch prediction mechanisms, each a separate and independent mechanism from the other. A set of rules are used to resolve those instances as to when the predictions differ.
摘要:
A fast queue mechanism is provided which keeps a queue of changes (i.e. store actions) issued by each processor, which queue is accessible by all processors. When any processor issues a store action to a line of memory in the queue, the old data is overwritten with the new data. If the queue does not currently have a corresponding entry, a new entry is activated. Room for the new entry is made by selecting some existing entry, either the oldest or the least recently used, to be removed. An entry that is to be removed is first used to update the line corresponding to it in main memory. After the changes held in the entry to be removed are applied to the old value of the line (from main memory) and the updated value is put back into main memory, the entry in the queue is removed by marking it "empty". When a processor accesses a line of data not in its cache, a cache miss occurs and it is necessary to fetch the line from main memory. Such fetches are monitored by the queue mechanism to see if it is holding changes to the line being fetched. If so, the changes are applied to the line coming from main memory before the line is sent to the requesting processor. After a new entry is made in the queue mechanism, other store actions to the same entry by any processor may occur and usually a number of store actions will occur to the entry before it is removed to make room for another.