摘要:
Three-dimensional (3-D) processor structures are provided which are constructed by connecting processors in a stacked configuration. For example, a processor system includes a first processor chip comprising a first processor, and a second processor chip comprising a second processor. The first and second processor chips are connected in a stacked configuration with the first and second processors connected through vertical connections between the first and second processor chips. The processor system further includes a mode control circuit to selectively configure the first and second processors of the first and second processor chips to operate in one of a plurality of operating modes, wherein the processors can be selectively configured to operate independently, to aggregate resources, to share resources, and/or be combined to form a single processor image.
摘要:
Three-dimensional (3-D) processor devices are provided, which are constructed by connecting processors in a stacked configuration. For instance, a processor system includes a first processor chip comprising a first processor and a second processor chip comprising a second processor. The first and second processor chips are connected in a stacked configuration with the first and second processors connected through vertical connections between the first and second processor chips. The processor system further includes a mode control circuit to selectively operate the processor system in one of a plurality of operating modes. For example, in a one mode of operation, the first and second processors are configured to implement a run-ahead function, wherein the first processor operates a primary thread of execution and the second processor operates a run-ahead thread of execution.
摘要:
Three-dimensional (3-D) processor devices are provided, which are constructed by connecting processors in a stacked configuration. For instance, a processor system includes a first processor chip comprising a first processor and a second processor chip comprising a second processor. The first and second processor chips are connected in a stacked configuration with the first and second processors connected through vertical connections between the first and second processor chips. The processor system further includes a mode control circuit to selectively operate the processor system in one of a plurality of operating modes. For example, in a one mode of operation, the first and second processors are configured to implement a run-ahead function, wherein the first processor operates a primary thread of execution and the second processor operates a run-ahead thread of execution.
摘要:
A three-dimensional (3-D) processor system includes a first processor chip and a second processor chip in a stacked configuration. The first processor chip includes a first processor having a first set of state registers. The second processor chip includes a second processor having a second set of state registers that corresponds to the first set of state registers. The first and second processors are connected through vertical connections between the first and second processor chips. A mode control circuit operates the processor system in one of a plurality of operating modes. In one mode of operation, the first processor is active and the second processor is inactive, and the first processor operates at a speed greater than a maximum safe speed of the first processor, and the first processor uses the second set of state registers of the second processor to checkpoint a state of the first processor.
摘要:
Three-dimensional (3-D) processor structures are provided which are constructed by connecting processors in a stacked configuration. For example, a processor system includes a first processor chip comprising a first processor, and a second processor chip comprising a second processor. The first and second processor chips are connected in a stacked configuration with the first and second processors connected through vertical connections between the first and second processor chips. The processor system further includes a mode control circuit to selectively configure the first and second processors of the first and second processor chips to operate in one of a plurality of operating modes, wherein the processors can be selectively configured to operate independently, to aggregate resources, to share resources, and/or be combined to form a single processor image.
摘要:
A method comprising receiving a branch instruction, decoding a branch address and the branch instruction, executing a branch action associated with the branch address, determining whether a branch associated with the branch action was taken, and saving an identifier of the branch instruction and in indicator that the branch action was taken in a prefetch history table responsive to determining that the branch associated with the branch action was taken.
摘要:
Block placement within each device-containing layer is optimized under the constraint of a simultaneous optimization of interlayer connectivity between the device-containing layer and immediately adjacent device-containing layers. For each functional block within the device-containing layer, lateral heat flow is calculated to laterally adjacent functional blocks. If the lateral heat flow is less than a threshold value for a pair of adjacent functional blocks, placement of the functional blocks and/or interlayer interconnect structure array therebetween or modification of the interlayer interconnect structure array is performed. This routine is repeated for all adjacent pairs of functional blocks in each of the device-containing layers. Subsequently, block placement within each device-containing layer may be optimized under the constraint of a simultaneous optimization of interlayer connectivity across all device-containing layers. This method provides a design having sufficient lateral heat flow in each of the device-containing layers in a semiconductor chip.
摘要:
Enhanced modularity in heterogeneous three-dimensional computer processing chip stacks includes a method of manufacture. The method includes preparing a host layer and integrating the host layer with at least one other layer in the stack. The host layer is prepared by forming cavities on the host layer for receiving chips pre-configured with heterogeneous properties relative to each other, disposing the chips in corresponding cavities on the host layer, and joining the chips to respective surfaces of the cavities thereby forming an element having a smooth surface with respect to the host layer and the chips.
摘要:
Methods, systems, and apparatuses are provided for operating a cache comprising dynamic storage having an array of cells. At a refresh interval, the array of cells of the cache is refreshed. A determination is made whether an error is found in the cache at the refresh interval. If no error is found in the cache, the refresh interval is repeatedly increased by a predetermined amount until an error is found. If an error is found, the error is recovered from. A determination is made if a number of line deletions for the cache is a maximum number of line deletions for the cache. If the maximum number of line deletions is not attained, a line having the error is deleted, and the number of line deletions for the cache is increased. If the maximum number of line deletions for the cache is attained, the refresh interval is decreased by the predetermined amount.
摘要:
Methods, systems, and apparatuses are provided for operating a cache comprising dynamic storage having an array of cells. At a refresh interval, the array of cells of the cache is refreshed. A determination is made whether an error is found in the cache at the refresh interval. If no error is found in the cache, the refresh interval is repeatedly increased by a predetermined amount until an error is found. If an error is found, the error is recovered from. A determination is made if a number of line deletions for the cache is a maximum number of line deletions for the cache. If the maximum number of line deletions is not attained, a line having the error is deleted, and the number of line deletions for the cache is increased. If the maximum number of line deletions for the cache is attained, the refresh interval is decreased by the predetermined amount.