Abstract:
Systems and methods are disclosed for enabling a mesh network node to switch from a base station role to a user equipment role relative to a second mesh network node, and vice versa. By switching roles in this manner, the mesh network node may be able to benefit from increased uplink or downlink speed in the new role. This role reversal technique is particularly useful when using wireless protocols such as LTE that are asymmetric and allow differing throughput on uplink and downlink connections. Methods for determining whether to perform role reversal are disclosed, and methods for using role reversal in mesh networks comprising greater than two nodes are also disclosed.
Abstract:
A method may be disclosed in accordance with some embodiments, comprising: receiving, at a virtualizing gateway, a first service request from a first user equipment (UE) via a first eNodeB; creating, at the virtualizing gateway, an association from each of a plurality of UE identifiers to a desired core network; applying, at the virtualizing gateway, a first filter using a first UE identifier of the first UE, based on the association; forwarding, at the virtualizing gateway, based on the applied first filter, the first service request from the first UE to the first core network; receiving, at the virtualizing gateway, via a second eNodeB, a second service request from a second user equipment (UE); applying, at the virtualizing gateway, a second filter using a second UE identifier of the second UE, based on the association; and forwarding, at the virtualizing gateway, based on the applied second filter, the second service request from the second UE to the second core network.
Abstract:
In this invention, we disclose methods for enabling ad hoc cellular base station functionality within a user equipment when the connection quality between a base station and the user equipment is limited or nonexistent. These methods include measuring a connection quality between a user equipment and its serving base station. If the connection quality is below a threshold, the user equipment can enable its internal ad hoc cellular base station functionality. This is done by running a software within the user equipment that (a) checks the connection quality periodically, and (b) enables ad hoc cellular base station functionality of the connection threshold dips below a certain value. In one embodiment, that threshold could be the same threshold value that a user equipment would use if it were making a decision to handoff to another base station based on poor connection quality.
Abstract:
Described herein are systems and methods for providing software provisioning of functionality in a wireless communications device. Software-enabling functionality may include systems for granting a license to intellectual property or other pre-embedded functionality within a device. Communications to and from the device may be used to send or receive activation messages and/or licensing messages. Network capabilities may be provisioned using activation messages sent over the network. Activation messages may be sent in-band or out-of-band, for a device connected to the Internet and/or a mobile operator core network. Licenses may be required for any functions or intellectual property present on a given device. Activation may enable logical modules of a system-on-chip (SOC), functions of a software-defined radio (SDR), baseband, or DSP core. The disclosed systems and methods could thereby provide a new, flexible paradigm, namely, “Silicon as a Service (SaaS).”
Abstract:
A gateway server situated between a radio access network and a core network is disclosed that includes a radio access network packet interface, a load management module for monitoring load of a management server in the core network coupled to the radio access network packet interface, a packet forwarding module for forwarding requests to the management server coupled to the load management module, and a local packet core module coupled to the load management module and the packet forwarding module, the local packet core module being configured to respond to a mobile device, when an overload is detected at the management server, with a management server message requesting that the mobile device try again at a later time.
Abstract:
Systems and methods relating to full duplex mesh networks are disclosed. In one embodiment, a mesh network comprising a plurality of transceiver nodes using a single frequency band may be disclosed, each transceiver node comprising: a first transceiver for transmitting and receiving to and from a backhaul node on the single frequency band; and a second transceiver for transmitting and receiving to and from an access node on the single frequency band, each transceiver of each transceiver node performing self-interference cancellation to send and receive full duplex data on the single frequency band at substantially the same time, thereby enabling the creation of a mesh network with at least one transceiver node having both access and backhaul using only the single frequency band.
Abstract:
We disclose systems and methods of dynamically virtualizing a wireless communication network. The communication network is comprised of heterogeneous multi-RAT mesh nodes coupled to a computing cloud component. The computing cloud component virtualizes the true extent of the resources it manages and presents an interface to the core network that appears to be a single base station.
Abstract:
Systems and methods are disclosed for enabling a mesh network node to switch from a base station role to a user equipment role relative to a second mesh network node, and vice versa. By switching roles in this manner, the mesh network node may be able to benefit from increased uplink or downlink speed in the new role. This role reversal technique is particularly useful when using wireless protocols such as LTE that are asymmetric and allow differing throughput on uplink and downlink connections. Methods for determining whether to perform role reversal are disclosed, and methods for using role reversal in mesh networks comprising greater than two nodes are also disclosed.
Abstract:
In this invention, we disclose a multimedia streaming base station used preferably in a wireless communication network. The multimedia streaming base station is capable of capturing, storing, encoding, and transmitting multimedia via a local multimedia capture device. The multimedia base station can be a heterogeneous multi-RAT node, in which case the wireless communication network could be a heterogeneous mesh network. The multimedia base station could by a dynamic mesh node in alternate embodiments. Additional embodiments of the present invention include methods for facilitating streaming of locally captured multimedia content.
Abstract:
In this invention, we disclose methods for enabling ad hoc cellular base station functionality within a user equipment when the connection quality between a base station and the user equipment is limited or nonexistent. These methods include measuring a connection quality between a user equipment and its serving base station. If the connection quality is below a threshold, the user equipment can enable its internal ad hoc cellular base station functionality. This is done by running a software within the user equipment that (a) checks the connection quality periodically, and (b) enables ad hoc cellular base station functionality of the connection threshold dips below a certain value. In one embodiment, that threshold could be the same threshold value that a user equipment would use if it were making a decision to handoff to another base station based on poor connection quality.