Abstract:
Channel clearance using a shared radio frequency spectrum band may be performed for both a base station and a user equipment (UE). A base station may perform a listen before talk (LBT) procedure and verify one or more channels in a shared radio frequency spectrum band are available for transmissions and, if the LBT procedure is successful, transmit a pre-grant transmission to one or more UEs. The UEs may perform an LBT procedure for channel(s) indicated in the pre-grant transmission. If the UE LBT procedure passes, the UE may transmit a channel clearance signal, and may transmit a feedback communication responsive to the pre-grant transmission. The feedback communication may indicate, for example, the pre-grant transmission was received and which of the one or more channels are available based on the LBT procedure. The base station may receive the feedback communication and initiate transmissions to the UE.
Abstract:
A method of wireless communication includes receiving physical layer signaling from a serving eNodeB in a wireless network. Interference estimation, interference cancellation and/or spatial equalization of user equipment is controlled in accordance with the received signaling.
Abstract:
Embodiments include systems and methods for managing an adaptive interference filter performed by a device processor of a mobile communication device. A device processor may determine whether a transmission power from the mobile communication device is greater than or equal to a transmit power threshold. The device processor may determine whether a ratio of interference in a received signal to a level of the received signal including noise (interference ratio) is greater than or equal to an interference ratio threshold in response to determining that the transmission power is greater than or equal to the transmit power threshold. The device processor may perform interference cancellation with the adaptive interference filter in response to determining that the interference ratio is greater than or equal to the interference ratio threshold. In some embodiments the adaptive interference filter may be a non-linear interference cancellation filter.
Abstract:
Methods, systems, and devices are described for wireless communication. A transmitting device may send a signal including multiple transport blocks corresponding to multiple simultaneous hybrid automatic repeat request (HARQ) processes. Additional control information may be used to support the multiple simultaneous HARQ processes. For instance, the additional control information may indicate the number of available HARQ processes, an activity state for each HARQ process (e.g., active new data, active retransmission, or inactive), and the redundancy versions of each HARQ process. In some cases, the additional control information may be included in a downlink grant. A receiving device may respond with an acknowledgement or negative acknowledgment (ACK/NACK) for each of the transport blocks. The transmitting device may identify a retransmission status for each HARQ process based on the ACK/NACKs, and transmit new redundancy versions (or new data) to the receiving device.
Abstract:
Methods, systems, and devices are described for wireless communication. Wireless devices may exchange data using Medium Access Control (MAC) layer units known as transport blocks which may include a number of code blocks (CBs). A receiving device may attempt to decode each CB and send acknowledgement (ACK) and negative-acknowledgment (NACK) feedback to the transmitting device based on the whether each CB was successfully decoded. The receiving device may determine a format from two or more available formats for transmitting the ACK/NACK feedback. The format for the ACK/NACK feedback may be determined based at least in part on a number of CBs received and a number of CBs that have a NACK feedback. ACK/NACK feedback may be provided on an individual CB basis, or for bundles of CBs. The transmitting device may perform blind decoding of the received feedback to determine the ACK/NACK format and CBs that have NACK feedback.
Abstract:
Methods, systems, and devices are described for wireless communication. Wireless devices may exchange data using Medium Access Control (MAC) layer units known as transport blocks. The transport blocks may be partitioned into code block clusters (CBCs), each of which may include one or more code blocks. A receiving device may attempt to decode a transport block and send acknowledgement (ACK) and negative-acknowledgment (NACK) information to the transmitting device based on the whether each CBC was successfully decoded. The transmitting device may retransmit a redundancy version of a CBC for each NACK received. The transmitting device may group CBCs in segments of a transport block according to redundancy version. In some cases, the transmitting device may send a control message in a control channel which indicates the composition of the transport block.
Abstract:
Techniques are provided for reduction of processing requirements for portions of a received transmission relative to processing requirements for other portions of the same transmission. Different coding schemes may be employed for portions of a data transmission. In some examples, a tail portion of a data transmission may use a coding scheme that had reduced processing requirements relative to other portions of the data transmission. The reduced processing requirements may allow a receiver to generate an acknowledgment of receipt relatively quickly, which may reduce latency for acknowledging receipt of a transmission.
Abstract:
A method for communicating in an advanced long term evolution (LTE-A) network using common reference signal (CRS) resources associated with different interference levels due to resource partitioning is disclosed. Signals are received from an eNodeB indicating a subset of CRS resources for radio link monitoring (RLM) and/or reference signal received power (RSRP) measuring. The subset of CRS resources includes the CRS resources expected to have lower interference from the interfering eNodeBs. RLM and/or RSRP measurements are performed based on the indicated subset.
Abstract:
Obtaining a timing reference in wireless communication is facilitated when desiring to communicate with a weak serving base station (such as an evolved NodeB) in the presence of a stronger interfering base station. The user equipment (UE) may track a stronger interfering base station's timing, or the UE may track a timing that is derived by a composite power delay profile (PDP) from multiple base stations. The composite PDP may be constructed by adjusting individual base station PDPs according to a weighting scheme. The timing obtained in such a manner may be used for estimation of the channel of the interfering base station and cancelling interfering signals from the base station. It may also be used to estimate the channel of the serving base station after adding a backoff. The UE may track a stronger interfering base station's frequency, or the UE may track a composite frequency.
Abstract:
Estimation of timing errors is disclosed that uses user equipment reference signals (UERSs). A UE models each channel in a user equipment reference signal (UERS) as a channel on an adjacent UERS tone multiplied by a phase ramping term. This phase ramping term is determined using an estimator on the modeled channels. The UE then determines the equivalent timing error by mapping the phase ramping terms into the estimated timing errors in the time domain. In coordinated multipoint (CoMP) systems, the UERS-based timing error may be used to identify an aligned common reference signal (CRS) associated with the network entity transmitting the data. With this determination, the UE may estimate a CRS-based timing error and either substitute the CRS-based timing error for the UERS-based timing error or calculate a further average timing error based on both the CRS-based and UERS-based timing errors.