Abstract:
A first combination of frequency bands is selected for transmitting a first data packet, and a second, different combination of frequency bands is selected for transmitting a second data packet. A data stream is divided into a first set of data and a second set of data. The first set of data is allocated to the first combination of frequency bands, and the second set of data is allocated to the second combination of frequency bands.
Abstract:
A method for sending data includes receiving, at a first station of a plurality of stations, a trigger frame from an access point of a wireless network. The method also includes determining a downlink channel estimation based on the trigger frame and sending the downlink channel estimation to the access point. The method further includes receiving uplink channel data from the access point in response to sending the downlink channel estimation. The method also includes sending data to the access point based on the uplink channel data.
Abstract:
A method and apparatus for concurrent wireless communications on multiple channels of the same frequency band. A wireless device receives a first data signal via a first transceiver chain while concurrently initiating a transmission of a second data signal via a second transceiver chain of the wireless device. The wireless device suspends updates to one or more tracking loops of the first transceiver chain in response to initiating the transmission of the second data signal. The updates to the one or more tracking loops may be suspended prior to transmitting the second set of data from the second transceiver chain. The wireless device may subsequently resume updates to the one or more tracking loops of the first transceiver chain after completing the transmission of the second data signal.
Abstract:
Methods and apparatus for channel state information feedback are provided. In various aspects, a message is transmitted to one or more wireless communication devices requesting channel state information. In some aspects, a first portion of the message is transmitted according to a first or second, and contains first information intended for a first or second set of wireless communication devices compatible with the first or second format respectively. In some aspects, a second portion of the first message is transmitted according to the second format, and contains second information intended for the second set of wireless communication devices compatible with the second format. In some aspects, this information may comprise at least one of a list of identifiers, a set of parameters for estimating the channel state information estimation, and uplink transmission allocation information.
Abstract:
Methods, apparatus, and computer-readable media for wireless communication may involve techniques for throughput estimation. An expected air time parameter may be used as a parameter for estimating throughput. The expected air time parameter may be indicative of an estimated air time fraction obtainable for communications using an access point (AP), for example, between a wireless station (STA) and the AP. Either the expected air time parameter or an estimated air time fraction determined (e.g., calculated) from the expected air time parameter may be transmitted from the AP to the STA (or other communication device) to allow the STA (or other communication device) to determine an estimated throughput for communications using the AP.
Abstract:
A method of wirelessly communicating a packet includes generating, at a wireless device, a first packet. The first packet includes a first preamble decodable by a plurality of devices and a second preamble decodable by only a subset of the plurality of devices. The first preamble includes a first signal field, and the second preamble includes a second signal field. The method further includes setting a length indication of the first signal field to carry non-length signal information. The method further includes transmitting the first packet.
Abstract:
Methods and apparatuses for communicating over a wireless communication network are disclosed herein. One method includes forming a message that includes a plurality of data tones and one or more direct current (DC) protection tones. The method further includes setting a value for a data tone of the plurality of data tones to carry a data portion of the message. The method further includes setting a value for a DC protection tone of the one or more DC protection tones by repeating the value for the data tone as the value for the DC protection tone. The method further includes transmitting the message to one or more wireless communication devices utilizing the plurality of data tones and the one or more DC protection tones.
Abstract:
Methods and apparatus for providing wireless messages according to various tone plans can include, for example, a method of wireless communication. The method includes selecting at least one of a 242-tone resource unit (RU), associated with a 256-tone plan including 234 data tones, 8 pilot tones, 3 direct current tones, and 11 edge tones, for transmission over a 20 MHz bandwidth, or a 484-tone RU, associated with a 512-tone plan including 468 data tones, 16 pilot tones, 5 direct current tones, and 23 edge tones, for transmission over a 40 MHz bandwidth. The method further includes providing a message for transmission according to the 256-tone plan or 512-tone plan.
Abstract:
A wireless transmitter can include a plurality of bandwidth modules, each bandwidth module processing data based on a predetermined frequency band. In one embodiment, such a wireless transmitter can include encoding components for receiving transmit data and generating encoded data. A multiple-input multiple-output (MIMO) stream parser can receive the encoded data and generate a plurality of MIMO streams. A first module parser coupled to a first MIMO stream can generate a first plurality of partial MIMO streams. A first bandwidth module can include a first interleaver that interleaves bits of the first partial MIMO stream and generates first interleaved data. A second bandwidth module can include a second interleaver that interleaves bits of the second partial MIMO stream and generates second interleaved data. A first inverse fast Fourier transform (IFFT) unit can combine and process the first and second interleaved data and generate a first transmission MIMO stream.
Abstract:
A method for transmitting information in a wireless system is provided. In this method, the traffic on a plurality of channels can be determined. A bandwidth for a packet can be selected based on the traffic and available channel bandwidths. A modulation and a coding rate can be selected from a plurality of modulations and associated coding rates. The modulation and coding rate can be applied to a segment of the packet, wherein each segment includes one or more bandwidth units. The packet including the selected modulation and coding rate therein can be transmitted on at least one channel