Abstract:
A mobile station includes a receiver configured to receive containing a complex-valued modulation symbol from a base station, a processor configured to extract the complex-valued modulation symbol from the signal, wherein in response to being configured with code-division multiplex-4 (CDM-4), the complex-valued modulation symbol is mapped using a reference signal sequence. A base station includes a processor configured to generate a reference signal sequence for each subcarrier and OFDM symbol, and in response to being configured with code-division multiplex-4 (CDM-4), map a reference signal sequence to the complex-valued modulation symbols. Other embodiments including a method for performing communication on multiple input multiple output (MIMO) radio links are also disclosed.
Abstract:
The present disclosure relates to a 5G or a pre-5G communication system for supporting a higher data rate following 4G communication systems such as LTE. In accordance with an embodiment of the present disclosure, a method of a base station includes: checking an operation mode depending on whether beam sweeping is supported, transmitting a signal related to the operation mode to a terminal, and performing communication with the terminal according to the operation mode.
Abstract:
A base station capable of communicating with a user equipment (UE) includes a transceiver configured to transmit Channel State Information-Reference Signal (CSI-RS) according to a CSI-RS configuration comprising a number of antenna ports, and downlink signals containing the CSI-RS configuration and a precoding-matrix-construction configuration for precoding matrix indicator (PMI) reporting on physical downlink shared channels (PDSCH), the precoding-matrix-construction configuration comprising a first and second sampling factors, O1 and O2, and a first and second numbers, N1 and N2, receive, from the UE, uplink signals containing a precoding matrix indicator (PMI) derived using the CSI-RS according to the precoding-matrix-construction configuration, a controller configured to convert the PMI to one of predetermined precoding matrices. Other embodiments including UEs and methods are disclosed.
Abstract:
A Virtual Antenna Mapping (VAM) method of a base station and a transmission apparatus equipped with M physical antennas and Q Transceiver Units (TXRUs) are provided. The method includes transmitting Reference Signals (RSs) arranged differently according to respective VAM patterns to a terminal in a transmission mode supporting N logical antennas; receiving a feedback including information regarding a VAM pattern selected as a result of channel measurement with respect to the RSs transmitted according to the VAM pattern from the terminal; and transmitting a signal to the terminal through the M physical antennas by applying the selected VAM pattern, wherein the selected VAM pattern maps N data streams corresponding to the N logical antennas to the M physical antennas through the Q TXRUs.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A filter bank-based channel state report and resource allocation method and an apparatus for use in a wireless communication system are provided. The channel state report method of a receiver in a filter bank-based wireless communication system includes receiving filter bank information on at least two filter banks from a transmitter, measuring a channel state of the each of at least two filter banks based on the filter bank information, and transmitting channel state information, which is generated based on the measurement result, to the transmitter.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.A channel state information (CSI) acquisition method of a base station in a mobile communication system includes transmitting CSI configuration information to a terminal, selecting a beam for transmitting a beamformed CSI reference signal (BF-CSI-RS) to the terminal, transmitting the BF-CSI-RS to the terminal using the selected beam, and notifying the terminal of a beamforming update. Also, a terminal for reporting CSI to the base station and an operation method of the terminal be provided. A base station for acquiring CSI in a mobile communication system includes a transceiver configured to transmit and receive signals, and a controller configured to control the transceiver to transmit CSI configuration information to a terminal, to select a beam for transmitting a BF-CSI-RS to the terminal, to transmit the BF-CSI-RS to the terminal using the selected beam, and to notify the terminal of a beamforming update.
Abstract:
A method and an apparatus for detecting inter-cell interference in a mobile communication system are provided. A base station receives a reference signal (RS) from a terminal, generate one or more interference candidate RSs, calculate a cross correlation of the one or more interference candidate RSs and the received RS, estimate at least one of a size of a Resource Block (RB) an offset of the RB, a group index (U), and a cyclic shift (CS) by using a preset number of interference candidate RSs in an order of the large cross correlation. The base station further removes an interference signal or performs a direct reduction by using at least one of the estimated RB size, the RB offset, the timing offset, and the group index (U). According to the present disclosure, it is beneficial to mitigate or cancel inter-cell interference problem on an uplink transmission without any assistance of neighbor base stations and/or adjacent cells in a wireless communication system.
Abstract:
A battery pack including: a lithium air battery configured to receive air and discharge a discharge gas, the lithium air battery including a cell module configured to generate electricity based on oxidation of a lithium metal and reduction of oxygen; and a battery management unit configured to control charging and discharging of the lithium air battery, wherein the battery management unit includes a measurement unit configured to measure a composition ratio of the discharge gas, measure a current, and to generate discharge gas data and current data; a capacity estimation unit configured to estimate a present capacity of the lithium air battery based on the discharge gas data and the current data and to generate a present capacity data; and a state of health estimation unit configured to estimate a state of health of the lithium air battery based on the present capacity data.
Abstract:
A mobile station includes a receiver configured to receive containing a complex-valued modulation symbol from a base station, a processor configured to extract the complex-valued modulation symbol from the signal, wherein in response to being configured with code-division multiplex-4 (CDM-4), the complex-valued modulation symbol is mapped using a reference signal sequence. A base station includes a processor configured to generate a reference signal sequence for each subcarrier and OFDM symbol, and in response to being configured with code-division multiplex-4 (CDM-4), map a reference signal sequence to the complex-valued modulation symbols. Other embodiments including a method for performing communication on multiple input multiple output (MIMO) radio links are also disclosed.
Abstract:
A composite electrode includes a gel electrolyte including a solvent, a lithium salt, and an inorganic particle; and an electrode member including at least one of an electrode active material and a conducting material, wherein the gel electrolyte is in a form of a gel.