Abstract:
The present disclosure relates to a 5th Generation (5G) or pre-5G system to be provided to support a higher data transfer rate after a 4G communication system such as Long Term Evolution (LTE). The present invention is for performing random access in a wireless communication system, and a base station includes a communication unit for transmitting system information including a plurality of thresholds, and a control unit for determining a random access result for each mode on the basis of a detection result on a preamble transmitted from at least one terminal.
Abstract:
Different resources are selected based on QoS, emergency class, location, and SA count. A method for avoiding resource collision by a first User Equipment (UE) in a mobile communication system is provided. The method includes listening to Scheduling Assign (SA) information of a second UE; and selecting different resources between UEs based on the SA information.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE).A method for providing a device-to-device (D2D) communication-based service for an isolated user equipment (IUE) by a relay user equipment (RUE) in a mobile communication system is provided. The method includes establishing a D2D link with an IUE; and supporting establishment of a relay cellular link for the IUE based on the established D2D link, wherein the RUE is within a service coverage of an enhanced node B (eNB).
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). The present invention relates to a method for selecting, by a device, a peer discovery resource (PDR) in a device-to-device (D2D) communication system, the method comprising the steps of: determining a PDR selection range which can be selected by the device; and selecting a PDR in the determined PDR selection range.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An apparatus and method for acquiring synchronization information through the transmission and reception of signals between devices for device to device (D2D) communication is provided. A method for a user equipment (UE) in a wireless communication system includes detecting a synchronization signal of another UE in a predetermined measurement gap. The method also includes transmitting a detected result of the synchronization signal to an evolved Node B (eNB). A start time point of the measurement gap in a first measurement gap period and a start time point of the measurement gap in a second measurement gap period are different from each other.
Abstract:
An apparatus for transmitting information using a visible light includes at least three light emitting devices, each being installed based on a predetermined interval and direction, and a data transmitting unit to transmit data by controlling the at least three light emitting devices.
Abstract:
The present invention is to provide a method and device for controlling transmission power by taking comprehensive consideration not only of the effect received onto itself in each device-to-device (D2D) link of a D2D communication network but also of the effect exerted onto the neighboring links. According to an embodiment of the present invention, a processing method in a transmission terminal of a first link for controlling the transmission power of the transmission terminals of links in a D2D communication network, which includes terminals of at least the first link and terminals of a second link adjacent to the first link includes: measuring the strengths of first detection signals transmitted from reception terminals of the first link and the second link; and determining a first transmission power adjustment ratio for the transmission terminal of the first link so that a signal-to-interference ratio of the second link is greater than or equal to a predetermined threshold value on the basis of the measured strengths of the first detection signals.
Abstract:
In order to generate multiple-access signals, each transmitter transmits information by using all or a part of channel resources. The signal of each transmitter is mapped to an OFDM time-frequency resource space as a trellis modulation path. A mobile communication system maps trellis modulation paths of a plurality of transmitters to the same resource space. In order to effectively detect and distinguish signals of a plurality of transmitters transmitted through the same channel resource space, a receiver uses a message passing method between symbols and a path connection method. The receiver uses a state space expansion method, a backward pre-decoding method, and a successive interference cancellation method to more efficiently reconstruct a discovery signal.
Abstract:
A device and a method for performing Device to Device (D2D) communication in a wireless communication system are provided. The method includes transmitting information on a self-frequency band selected from all frequency bands for the D2D communication, to the second mobile station, receiving information on a counterpart-frequency band selected for the D2D communication, from the second mobile station, determining transmission and reception frequency bands to be used for the D2D communication, based on the information on the self-frequency band and the information on the counterpart-frequency band, transmitting data to the second mobile station in the determined transmission frequency band, and receiving data from the second mobile station in the determined reception frequency band.
Abstract:
A method and apparatus for performing a state transition for Device to Device (D2D) communication are provided. The method includes determining whether D2D initiation is required, while a terminal is operating in a first or a second state defined by EPS (Enhanced Packet System) Mobility Management (EMM)-Deregistered and EPS Connection Management (ECM)-IDLE at a Non-Access Stratum (NAS) layer and Radio Resource Control (RRC)-IDLE. If the D2D initiation is required, the method includes transitioning to a third state defined by EMM-Registered and ECM/RRC-Connected and performing the D2D initiation through a mobile communication network. If a deactivation condition is satisfied or a D2D state update is completed in the third state, the method includes transitioning to a fourth state defined by EMM-Registered and ECM/RRC-IDLE, and if a state update or scheduling for D2D communication is required in the fourth state, the method includes transitioning to the third state.