Abstract:
An X-ray detector capable of independently controlling a read-out rate for each region, an X-ray imaging apparatus having the same, and a method of controlling the same are provided. The X-ray detector includes a plurality of pixels which are two-dimensionally arranged and configured to output an electrical signal corresponding to incident X-rays, a plurality of gate lines configured to connect the plurality of pixels in a row direction, a plurality of data lines configured to connect the plurality of pixels in a column direction, a read-out circuit configured to read out the electrical signal generated by the plurality of pixels through the plurality of data lines, and a switcher configured to independently turn connections between the respective data lines in the plurality of data lines and the read-out circuit on and off.
Abstract:
An X-ray imaging apparatus and control method for the X-ray imaging apparatus are provided. The X-ray imaging apparatus includes an X-ray source configured to generate and emit X-rays having a preset broadband, an X-ray detector including a plurality of raw pixels configured to detect an average of ten photons or less in response to the X-rays which are emitted and convert the detected photons into an electrical signal, and an image processor configured to produce a plurality of single-energy images corresponding respectively to a plurality of preset energy bands by separating the plurality of raw pixels for each of the plurality of preset energy bands based on the electrical signal, and to produce a multi-energy image using the single-energy images.
Abstract:
Disclosed herein are an X-ray image apparatus and a control method for the same. The X-ray image apparatus includes an X-ray generator configured to sequentially irradiate an object with a plurality of X-rays of mutually different energy bands, an X-ray detector configured to acquire a plurality of pieces of X-ray data corresponding to the plurality of mutually different energy bands by detecting X-rays transmitted through the object, an image processor configured to convert the acquired plurality of pieces of X-ray data into a plurality of X-ray images and separate blood vessel X-ray images of the object from the plurality of X-ray images, and a controller configured to control operations of the X-ray generator so that the sequentially irradiated plurality of X-rays of the mutually different energy bands are repeatedly irradiated for fixed cycles. The X-ray generator may be configured to sequentially irradiate the object with the plurality of X-rays for a first time interval in the fixed cycles, and the first time interval may be different from a second time interval that is a time interval between a time point at which a final X-ray of a single cycle among the fixed cycles is irradiated and a time point at which a first X-ray of the following cycle among the fixed cycles is irradiated.
Abstract:
Disclosed herein are an X-ray imaging apparatus for optimizing radiography conditions upon radiography, and a control method thereof. The X-ray imaging apparatus includes: an input device configured to receive information about a patient; and a controller configured to conduct a search for a previously obtained X-ray image related to the information about the patient and a previously set radiography condition related to the information about the patient, and to set a radiography condition for a main-shot based on a result of the search.
Abstract:
Disclosed herein are an X-ray imaging apparatus and a method for controlling the same. The X-ray imaging apparatus includes an X-ray generator configured to radiate first-energy X-rays toward an object, an X-ray detector configured to detect the first-energy X-rays which propagate through the object, an image processor configured to generate a first object image which correspond to the detected first-energy X-rays and to estimate a second object image which corresponds to second-energy X-rays based on the generated first object image, and a controller configured to control the image processor to repeatedly estimate the second object image by controlling the X-ray generator to repeatedly radiate the first-energy X-rays toward the object.
Abstract:
The X-ray imaging apparatus to form a phase contrast image includes an X-ray source that generates X-rays to emit the X-rays to an object; an X-ray detector configured to detect X-rays having passed through the object to acquire phase contrast image signals on a per energy band basis; and a quantitative data acquirer configured to calculate approximate quantitative data of two or more constituent substances of the object using a relation between the phase contrast image signals on the per energy band basis and quantitative data of the constituent substances, and estimate quantitative data of the constituent substances by iteratively applying a regularization function to the approximate quantitative data.
Abstract:
Disclosed are an X-ray imaging apparatus, which may acquire different phase contrast image signals on a per energy band basis simultaneously without moving a detector or emitting X-rays multiple times by using a photon counting detector that separates detected X-rays into a plurality of energy bands, and a control method for the same. The X-ray imaging apparatus includes an X-ray source which is configured to generate X-rays and emit the X-rays toward a subject, an X-ray detector which is spaced apart from the subject by a predetermined distance and configured to detect X-rays which have propagated through the subject, and to separate the detected X-rays into a plurality of energy bands in order to acquire phase contrast image signals on a per energy band basis, and an image processor which is configured to form a phase contrast image of the subject by using the acquired phase contrast image signals.
Abstract:
A mobile X-ray imaging apparatus and method of controlling the same, the mobile X-ray imaging apparatus including a movable main body, an X-ray source installed on the main body via an arm, a tilt angle and rotation angle of the arm being adjustable, a portable X-ray detector configured to detect X-rays emitted from the X-ray source, a position information acquirer configured to acquire position information indicating a position of the X-ray source relative to the portable X-ray detector, and a position controller configured to control the X-ray source to move to a position corresponding to the portable X-ray detector based on the acquired position information.
Abstract:
Disclosed are an X-ray imaging apparatus that captures one or more images of an inner part of the human body or the like, and a method for controlling the apparatus. In particular, an imaging system includes an X-ray generator which is configured to irradiate a target object with X-rays, a detector which is configured to detect X-rays which are emitted at a plurality of times and which have propagated through the target object, a driver which is configured to change a position of the X-ray generator or the detector, an image processor which is configured to generate a plurality of X-ray images from the detected X-rays and to compare the plurality of X-ray images in order to generate at least one difference image, and a controller which is configured to detect tissues which constitute the target object based on the at least one difference image.
Abstract:
An X-ray imaging apparatus includes an X-ray emitter that emits X-rays to an object at a plurality of positions; a detector that detects X-rays having passed through the object and converts the detected X-rays into electric signals; and an image processor that is configured to generate X-ray images at the plurality of positions by reading out the electric signals, acquire volume data of the object using the X-ray images, and reproject the acquired volume data by using different bands of energy spectrums to acquire reconstructed reprojection images of different energy bands.