Abstract:
A novel organometallic complex having high heat resistance is provided. The organometallic complex, which includes a structure represented by General Formula (G1), includes iridium and a ligand. The ligand has a pyrazine skeleton. Iridium is bonded to nitrogen at the 1-position of the pyrazine skeleton. A phenyl group that has an alkyl group as a substituent is bonded at each of the 2- and 3-positions of the pyrazine skeleton, and a phenyl group that has a cyano group as a substituent is bonded at the 5-position of the pyrazine skeleton. The ortho position of the phenyl group bonded at the 2-position of the pyrazine skeleton is bonded to iridium. In the formula, each of A1 to A4 independently represents a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms. Each of R1 to R6 independently represents any of hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms. Each of R7 to R11 independently represents any of hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms, and a cyano group. At least one of R7 to R11 represents a cyano group.
Abstract:
A light-emitting element in which a light-emitting layer contains an organic compound capable of emitting phosphorescence is provided. A light-emitting element which can have low driving voltage, high current efficiency, or a long lifetime is provided. In a light-emitting element in which a light-emitting layer is interposed between a pair of electrodes, the light-emitting layer contains an organic compound. The organic compound has a 1,2,4-triazole skeleton, a phenyl skeleton, an arylene skeleton, and a Group 9 metal or a Group 10 metal. The nitrogen atom at the 4-position of the 1,2,4-triazole skeleton coordinates to the Group 9 metal or the Group 10 metal. The nitrogen atom at the 1-position of the 1,2,4-triazole skeleton is bonded to a phenyl skeleton. The arylene skeleton is bonded to the 3-position of the 1,2,4-triazole skeleton and the Group 9 metal or the Group 10 metal.
Abstract:
A light-emitting element having high emission efficiency is provided. A light-emitting element having a low driving voltage is provided. A novel compound which can be used for a transport layer or as a host material or a light-emitting material of a light-emitting element is provided. A novel compound with a benzofuropyrimidine skeleton is provided. Also provided is a light-emitting element which includes the compound with the benzofuropyrimidine skeleton between a pair of electrodes.
Abstract:
As a novel substance having a novel skeleton, an organometallic complex with high emission efficiency which achieves improved color purity by a reduction of half width of an emission spectrum is provided. One embodiment of the present invention is an organometallic complex in which a β-diketone and a six-membered heteroaromatic ring including two or more nitrogen atoms inclusive of a nitrogen atom that is a coordinating atom are ligands. In General Formula (G1), X represents a substituted or unsubstituted six-membered heteroaromatic ring including two or more nitrogen atoms inclusive of a nitrogen atom that is a coordinating atom. Further, R1 to R4 each represent a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
Abstract:
A novel organometallic complex which can emit phosphorescence is provided. A light-emitting element, a light-emitting device, an electronic device, or a lighting device with high emission efficiency is provided. The organometallic complex having an aryl triazine derivative as a ligand is represented by General Formula (G1) below as a representative of the organometallic complex of the present invention.
Abstract:
Provided is a 5,6-diaryl-2-pyrazyl triflate, its synthetic method, and a method for synthesizing an organometallic complex having a triarylpyrazine ligand from the 5,6-diaryl-2-pyrazyl triflate. The triflate is readily obtained from the corresponding 5,6-diarylpyrazin-2-ol, and the palladium-catalyzed coupling of the 5,6-diaryl-2-pyrazyl triflate with an arylboronic acid derivative leads to a high yield of a triarylpyrazine derivative having high purity. The use of the triarylpyrazine derivative in the reaction with a metal compound such as a metal chloride results in an ortho-metallated organometallic complex with high purity. The high purity of the organometallic complex contributes to the extremely high durability of a light-emitting element.
Abstract:
An object is to provide an organometallic complex whose phosphorescence characteristics can be adjusted by varying the structure of a ligand. Alternatively, an object is to provide an organometallic complex capable of emitting yellow phosphorescence with high luminance. Alternatively, an object is to provide a light-emitting device with high added value. An organometallic complex which has a structure represented by a general formula (G1) below and at least one substituent group represented by a general formula (G2) below as a phenyl group and is formed in such a way that a phenylpyrazine derivative represented by a general formula (G0) below is ortho-metalated by an ion of a Group 9 metal or of a Group 10 metal is provided. Alternatively, a light-emitting element and a light-emitting device formed including the organometallic complex are provided.
Abstract:
As a novel substance having a novel skeleton, an organometallic complex with high emission efficiency which achieves improved color purity by a reduction of half width of an emission spectrum is provided. One embodiment of the present invention is an organometallic complex in which a β-diketone and a six-membered heteroaromatic ring including two or more nitrogen atoms inclusive of a nitrogen atom that is a coordinating atom are ligands. In General Formula (G1), X represents a substituted or unsubstituted six-membered heteroaromatic ring including two or more nitrogen atoms inclusive of a nitrogen atom that is a coordinating atom. Further, R1 to R4 each represent a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
Abstract:
Disclosed is an organometallic complex capable of variable phosphorescence characteristics and yellow emission at high luminance. The organometallic complex has a structure represented by a formula (G10), where at least one of R4, R5, R6, and R7 is a phenoxy group, M is a Group 9 metal or a Group 10 metal, and n is 2 when the central metal M is a Group 9 element, or n is 1 when the central metal M is a Group 10 element.
Abstract:
As a novel substance having a novel skeleton, an organometallic complex with high emission efficiency is provided. The organometallic complex includes a metal and a ligand. The metal is iridium or platinum. The ligand includes a 5H-pyrimido[5,4-b]indole skeleton and an aryl group bonded to the 4-position of the 5H-pyrimido[5,4-b]indole skeleton. The 3-position of the 5H-pyrimido[5,4-b]indole skeleton and the aryl group are bonded to the metal. In the formula, M represents iridium or platinum. In addition, Ar represents a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and each of R1 to R6 independently represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms.