Abstract:
A water-gate is intended to withstand pressure exerted by a liquid. The water-gate includes an essentially flat shell plate and a plurality of thin cores extending along the length of the shell plate, the thin cores being substantially parallel to one another. Each core is solidly connected to the shell plate and pierced with multiple disjoint holes. According to the disclosure, the water-gate comprises at least one stiffener formed by assembling multiple elements that are aligned along a longitudinal axis of the stiffener and that each extend between the cores without passing through the cores. Each element may be solidly connected to a face of at least one core around one of the holes.
Abstract:
An insulating cap is provided for an end winding of an electrical machine working at a high voltage, the end winding including a plurality of insulated winding bars protruding from respective winding slots and electrically conductively connected to one another in pairs at their ends so as to form a plurality of electrical connections. The cap includes an opening allowing the insulating cap to be pushed over a region of one of the electrical connections such that the insulating cap insulates an outside of the electrical connection. An interior includes a layer configured to gradually dissipate a high electrical field in the region of the electrical connection to an outside of the insulating cap, the outside of the insulating cap being at earth potential.
Abstract:
To recover the axial forces transmitted by a rotating shaft, a bearing assembly includes a plurality of distributed bearing units. Each bearing unit comprises: a stationary base; a resilient member having a stationary portion and a portion that is completely movable in a main direction of the forces to be supported; and a bearing surface that defines, together with the shaft, a water film. The bearing surface is connected to the movable portion. The minimum radius of the bearing surface is between 1 m and 3 m. The resilient member and the base define at least one water chamber. A plurality of ducts are arranged so as to connect the chambers together, thereby defining a closed circuit.
Abstract:
A hydraulic machine including an impeller which rotates with respect to a fixed structure and about an axis of rotation by a forced flow of water passing through it and at least one device for limiting water leaks is positioned between the impeller and the fixed structure so as to define an operating clearance between the impeller and the fixed structure and including at least one member that can be deformed or moved, while the impeller is rotating and being fed with water, in a redial direction with respect to the axis of rotation of the impeller.
Abstract:
An air-cooled motor-generator (10) includes a rotor (34) with a rotor shaft (11), which is arranged rotatably about a machine axis (15) and on which a rotor winding (16) is arranged, and a stator (35) with a stator laminate stack (18) and a stator winding (17) arranged therein, which concentrically surrounds the rotor winding (16) A closed cooling circuit operating with cooling air (24) is provided, with the cooling air in the cooling circuit flowing through the rotor winding (16) and the stator winding (17) radially from the inside outwards, the cooling air being cooled in coolers (19) arranged outside the stator (35) and being fed back to the rotor (34). Cooling which can be changed before or during operation is achieved in a simple manner by virtue of the fact that adjustable throttle devices are provided for adjusting the volume flow of the cooling air in the cooling circuit at the coolers (19).
Abstract:
A pad-type thrust bearing in which each pad rests on a volume of liquid enclosed in a cavity connected to adjacent cavities by ducts. The thrust bearing includes a number of casings, each casing delimiting the cavity and which are connected to one another by ducts. The convex casings and the ducts together form a hollow functional subassembly which is separate from the other constituent components of the thrust bearing and which delimits a liquid-filled closed volume. Each casing includes two half-shells positioned one on each side of a flexible bladder and each duct including a flexible hose inserted in a sheath.
Abstract:
The invention relates to a unit comprising a hydraulic turbine (1), a duct (5) leading a forced flow of water to the turbine, a duct (8) discharging the outgoing flow from the turbine and vanes (20) for guiding the flow through the discharge duct. Each guide vane (20) is able to rotate about an axis (x22) secant to the wall (84) of the discharge duct. Means (30) are provided for controlling the angular position of the vane (20) about its axis of rotation (x22). Each guide vane (20) can also be retracted into the wall (84) of the discharge duct (8), and means (21) are provided for adjusting the extent to which they are withdrawn into the wall.
Abstract:
This hydraulic machine comprises a wheel supported by a shaft (5), the wheel and the shaft being able to rotate about a vertical axis (X5) while a radial hydrostatic or hydrodynamic bearing (100) is formed between, on the one hand, a radial peripheral surface (52) of the shaft and, on the other hand, an internal radial surface (102) of a member (101) that is fixed relative to the vertical axis. The bearing (100) extends between two edges (121, 122) which, in normal operation, constitute regions for the removal of a film of water formed in the bearing. At least one cavity (130) is created in the fixed member (101) and opens onto its internal radial surface (102) near a first edge (122) of the bearing. The machine comprises means (131, 132, 133) for placing the cavity (130) in fluidic communication with a volume (V1) situated outside the bearing near the second edge (121) of the bearing (100). That allows some (E2) of the film of water from the bearing (100) to be removed towards the second edge (121) if the bearing becomes obstructed near the first edge (122).