Abstract:
In one embodiment, a receiver including one or more signal-processing blocks and a hardware-based matrix co-processor. The one or more signal-processing blocks are adapted to generate a processed signal from a received signal. The hardware-based matrix co-processor includes two or more different matrix-computation engines, each adapted to perform a different matrix computation, and one or more shared hardware-computation units, each adapted to perform a mathematical operation. At least one signal-processing block is adapted to offload matrix-based signal processing to the hardware-based matrix co-processor. Each of the two or more different matrix-computation engines is adapted to offload the same type of mathematical processing to at least one of the one or more shared hardware-computation units.
Abstract:
A method for comparing configurations in a telecommunication system comprises switching S1, S3 between two or more configurations, and for each configuration measuring S2, S4 some predetermined parameter. The switching and measuring steps are repeated at least one time during a predetermined time period. For each of the configurations the collected measurements are statistically evaluated S5. Subsequently, the evaluated parameters and consequently the configurations can be compared S6.
Abstract:
According to a method and apparatus taught herein, the computation of intermediate combining weights considers impairment correlations common to two received signal streams, but does not account for cross-stream interference attributable to channel reuse between the two streams. Excluding consideration of channel reuse cross-stream interference from the computation of intermediate combining weights simplifies intermediate combining weight computation and increases computational robustness. Further, final combining weights, such as for Generalized Rake combining or equalization combining, may be obtained efficiently from the intermediate combining weights through the use of weight scaling factors, which do account for channel reuse cross-stream interference. Moreover, in at least some instances, the intermediate combining weights are of interest. For example, signal quality estimates for one or both streams may be computed from the corresponding intermediate combining weights.
Abstract:
A method and apparatus in a radio receiver for canceling interference from a high power, high data rate signal received in a combined signal that includes a contribution from the high power signal and a contribution from a lower power signal. It is first determined whether the high power signal was correctly received. A CRC checksum may be used to determine whether the high power signal was received with a good reliability. Thereafter, the contribution of the high power signal is removed from the received signal only if the high power signal was correctly received. The contribution of the high power signal may be removed by hard-subtracting the contribution of the high power signal from the received signal if all of the bits of the checksum are correct, and soft-subtracting the contribution of the high power signal from the received signal if most, but not all, of the bits in the checksum are correct.
Abstract:
In one or more embodiments, a receiver circuit generates impairment correlation estimates for a desired signal that are compensated for the use of different transmission scrambling codes in transmitting the desired signal and an associated pilot signal. In one embodiment, an impairment correlation estimation method comprises determining impairment correlation estimates from a pilot signal in a received CDMA signal, adapting the impairment correlation estimates for scrambling code effects if the desired signal and pilot signal are transmitted under different transmission scrambling codes, and performing one or more signal processing operations with respect to the desired signal based on the impairment correlation estimates. For example, in at least one embodiment, the receiver circuit is configured to compensate elements of an impairment correlation matrix that correspond to signal delays of the desired signal based on transmit power allocation differences between pilot and desired signal scrambling codes.
Abstract:
Respective residual frequency offsets of de-spread correlated signals derived from a received communication signal are determined and used to improve receiver performance in high-velocity situations. The knowledge of the residual frequency offsets of the respective fingers can be used for adaptive AFC combining, improved velocity estimation, and adaptive residual frequency offset compensation.
Abstract:
According to one embodiment taught herein, a method of determining impairment correlations between a plurality of delays of interest for a received CDMA signal comprises generating kernel functions as samples of a net channel response of the received CDMA signal taken at defined chip sampling phases for delay differences between the plurality of delays of interest. In a parametric Generalized Rake (G-Rake) receiver embodiment, the delays of interest represent the delay positions of the fingers being used to characterized received signal. In a chip equalizer receiver embodiment, the delays of interest represent the delay positions of the equalizer taps. The method continues with determining impairment correlations based on convolving the kernel functions. Corresponding receiver circuits, including an impairment correlation estimation circuit configured for parametric G-Rake operation, may be implemented in a variety of communication devices and systems, such as in wireless communication network base stations and mobile stations.
Abstract:
An interference reduction receiver is disclosed. The interference reduction receiver includes a weight generating unit for obtaining weights by multiplying a signal correlation matrix of an input signal and a channel response vector. The input signal is despread at two or more predetermined timings, the despread signals are multiplied by the weights, the weight-multiplied signals are added, and an original signal is obtained.
Abstract:
A receiver employs low-rate processing to synthesize the effect of high-rate interference in a received multi-rate signal. Each high-rate subchannel is analyzed on its low-rate descendents to produce symbol estimates for each low-rate symbol interval. The symbol estimates are applied to low-rate descendent subchannels, which are then combined to synthesize the effects of the high-rate interference. An interference canceller processes the synthesized interference with the received signal for producing an interference-cancelled signal. Alternatively, analogous steps may be applied at high-rate to analyze, synthesize, and cancel the effects of low-rate interference in a multi-rate signal.
Abstract:
A method and corresponding circuit for determining a final result for a desired series of multiply-and-accumulate (MAC) operations are based on counting the occurrence of products in the desired series of MAC operations, multiplying the counts by their corresponding products to obtain partial sums, and adding the partial sums to obtain the final result. MAC processing as taught herein can be applied to a wide range of applications, such as received signal processing in wireless communication for computationally efficient (and high-rate) generation of interference correlation estimates and/or equalization filter values for a received communication signal.