摘要:
The present disclosure is generally directed to a desalination system. In some embodiments, the desalination system includes one or more recycle seawater systems configured to receive one or more concentrated brine streams produced by the desalination system and generate one or more recycle brine streams using the one or more concentrated brine streams and desalinated water.
摘要:
Disclosed herein is a method for recovering water from a salt solution. The method can include mixing the salt solution with a salting out solution that includes at least one enolizable ketone and at least one alcohol. The salting out solution can absorb the water from the salt solution and the water can be released using a regenerant solution. A base solution can also be added to fully regenerate the salting out solution so that it can be reused.
摘要:
A method for preparing potassium chloride from carnallite includes: carrying out high-temperature water solution mining treatment on carnallite with fresh water to obtain potassium-rich saturated brine; mixing the potassium-rich saturated brine, a sylvine saturated solution, and bittern for mixing brine, evaporation and decomposition to obtain artificial sylvine; and carrying out low-temperature selective dissolution treatment on the artificial sylvine with fresh water to prepare potassium chloride. The carnallite is mined by using hot water, which reduces the content of sodium chloride in the potassium-rich saturated brine; artificial sylvine is only subjected to low-temperature selective dissolution once, which avoids unnecessary energy consumption and impurity accumulation unnecessary for multifold cycles of thermal dissolution-cold crystallization treatment of sylvine while guaranteeing the high yield and high quality of potassium chloride. The method is suitable for different grades of carnallite, has extremely strong adaptability and loose technical conditions, and is conducive to promotion and implementation.
摘要:
A cooling pond system and related methods of improving cooling performance in a cooling pond system using one or more submerged dams to increase cooling performance within the cooling pond system, and increase salt precipitation or recovery. The inclusion of one or more submerged dams within an existing cooling pond system can reduce an outflow temperature by 1-5° F. as compared to the same cooling pond system without any submerged dams. In addition or alternatively, pond depth can be controlled to enhance flow mixing and convection cooling. As the temperature is reduced throughout the cooling pond system, more potassium containing salts are precipitated form the brine solution resulting in increased production or recovery within the same cooling footprint.