摘要:
The present invention provides a corrosion-resistant and heat-resistant aluminum-based alloy thin film consisting of a composite having a composition represented by the general formula, Al.sub.a Ni.sub.b X.sub.c N.sub.d, wherein: X is a metal element selected from Y and Zr and a, b, c and d are as follows, in atomic percentages: 70.ltoreq.a.ltoreq.93, 0.5.ltoreq.b.ltoreq.7.5, 0.5.ltoreq.c.ltoreq.12 and 1.ltoreq.d.ltoreq.18, the composite being at least 50% (by volume) composed of an amorphous phase. The thin films are produced by depositing a material having the composition represented by the above-defined general formula onto a substrate by a thin film formation technique, such as sputtering, vacuum deposition or ion plating. In the production process, only nitrogen may be supplied as gas. The novel aluminum-based alloy thin film has superior corrosion-resistance and heat-resistance together with high levels of hardness and wear resistance. Further, the thin films can be subjected to a high degree of bending.
摘要:
The present invention provides high strength, heat resistant aluminum-based alloys having a composition represented by the general formula Al.sub.a M.sub.b Ce.sub.c, wherein M is at least one metal element selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu and Nb; and a, b and c are atomic percentages falling within the following ranges:50.ltoreq.a.ltoreq.93, 0.5.ltoreq.b.ltoreq.35 and 0.5.ltoreq.c.ltoreq.25,the aluminum alloy containing at least 50% by volume of amorphous phase. The aluminum-based alloys are especially useful as high strength, high heat resistant materials in various applications and since they exhibit superplasticity in the vicinity of their crystallization temperature, they can be easily processed into various bulk materials by extrusion, press woring or hot-forging at the temperatures within the range of the crystallization temperature .+-.100.degree. C.
摘要:
The present invention provides high-strength and heat resistant aluminum alloys having a composition represented by the general formula Al.sub.a M.sub.b La.sub.c (wherein M is at least one metal element selected from the group consisting of Fe, Co, Ni, Cu, Mn and Mo; and a, b and c are atomic percentages falling within the following ranges:65.ltoreq.a.ltoreq.93, 4.ltoreq.b.ltoreq.25 and 3.ltoreq.c.ltoreq.15),the aluminum alloys containing at least 50% by volume of amorphous phase. The aluminum alloys are especially useful as high strength and high heat resistant materials in various applications and, since the aluminum alloys specified above exhibit a superplasticity in the vicinity of their crystallization temperature, they can be readily worked into bulk forms by extrusion, press working or hot forging in the vicinity of the crystallization temperature.
摘要:
The invention provides an aluminum based alloy consisting essentially of the formula Al.sub.bal Fe.sub.a X.sub.b, wherein X is at least one element selected from the group consisting of Zn, Co, Ni, Cr, Mo, V, Zr, Ti, Y and Ce, "a" ranges from about 7-15 wt. %, "b" ranges from about 2-10 wt. % and the balance is aluminum. The alloy has a predominately microeutectic microstructure, and is produced by a method and apparatus for forming rapidly solidified metal within an ambient atmosphere. Generally stated, the apparatus includes a moving casting surface which has a quenching region for solidifying molten metal thereon. A reservoir holds molten metal and has orifice means for depositing a stream of molten metal onto the casting surface quenching region. A heating mechanism heats the molten metal contained within the reservoir, and a gas source provides a non-reactive gas atmosphere at the quenching region to minimize oxidation of the deposited metal. A conditioning mechanism disrupts a moving gas boundary layer carried along by the moving casting surface to minimize disturbances of the molten metal stream that would inhibit quenching of the molten metal on the casting surface at a quench rate of at least about 10.sup.6 .degree. C./sec. Particles composed of the alloys of the invention can be heated in a vacuum and compacted to form a consolidated metal article have high strength and good ductility at both room temperature and at elevated temperatures of about 350.degree. C. The consolidated article is composed of an aluminum solid solution phase containing a substantially uniform distribution of dispersed intermetallic phase precipitates therein. These precipitates are fine intermetallics measuring less than about 100 nm in all dimenisons thereof.
摘要:
An aluminum alloy containing about 2 to 6 weight percent titanium, about 3 to 11 weight percent of a rare earth of the Lanthanide Series and up to about 3 weight percent of at least one Group VIII metal, balance aluminum, is disclosed. The alloy is preferably prepared by rapid solidification in powder, particulate or ribbon form, and is subsequently compacted under controlled conditions.
摘要:
The invention provides an aluminum based alloy consisting essentially of the formula Al.sub.bal Fe.sub.a X.sub.b, wherein X is at least one element selected from the group consisting of Zn, Co, Ni, Cr, Mo, V, Zr, Ti, Y, Si and Ce, "a" ranges from about 7-15 wt %, "b" ranges from about 1.5-10 wt % and the balance is aluminum. The alloy has a predominately microeutectic microstructure.The invention also provides a method and apparatus for forming rapidly solidified metal, such as the metal alloys of the invention, within an ambient atmosphere. Generally stated, the apparatus includes a moving casting surface which has a quenching region for solidifying molten metal thereon. A reservoir holds molten metal and has orifice means for depositing a stream of molten metal onto the casting surface quenching region. A heating mechanism heats the molten metal contained within the reservoir, and a gas source provides a non-reactive gas atmosphere at the quenching region to minimize oxidation of the deposited metal. A conditioning mechanism disrupts a moving gas boundary layer carried along by the moving casting surface to minimize disturbances of the molten metal stream that would inhibit quenching of the molten metal on the casting surface at a quench rate of at least about 10.sup.6 .degree. C./sec.Particles composed of the alloys of the invention can be heated in a vacuum and compacted to form a consolidated metal article have high strength and good ductility at both room temperature and at elevated temperatures of about 350.degree. C. The consolidated article is composed of an aluminum solid solution phase containing a substantially uniform distribution of dispersed intermetallic phase precipitates therein. These precipitates are fine intermetallic measuring less than about 100 nm in all dimensions thereof.
摘要:
The invention is directed to microcrystalline Al-based alloys produced by annealing an alloy formed initially in a substantially amorphous state by rapid solidification (about 10.sup.4 K/sec) and having a composition consisting essentially of, in atomic %:from 5 to 30% Sifrom 11 to 22% Niwherein the Ni may be partially substituted by Fe up to 10%, by V or B up to 5 atomic % each, or totally substituted by Mn up to 22 atomic %, and wherein Fe+Ni+Si.ltoreq.42%. In the microcrystalline state, in the vicinity of the first crystallization peak, there is a metastable hexagonal phase whose crystalline parameters are about a=0.661 nm and c=0.378 nm.
摘要:
The present invention relates to substantially amorphous or microcrystalline aluminium-base alloys.Such alloys are of the following chemical composition:Al.sub.a M.sub.b M'.sub.c X.sub.d Y.sub.ein which:50.ltoreq.a.ltoreq.95 atom %M representing one or more metals of the group Mn, Ni, Cu, Zr, Ti, V, Cr, Fe and Co with:0.ltoreq.b.ltoreq.40 atom %M' representing Mo and/or W with:0.ltoreq.c.ltoreq.15 atom %X representing one or more elements of the group Ca, Li, Mg, Ge, Si and Zn, with:0.ltoreq.d.ltoreq.20 atom %Y representing the inevitable production impurities such as O, N, C, H, He, Ga, etc . . . , the proportion of which does not exceed 3 atom %.The alloys according to the invention can be produced by means of known methods in the form of wires, strips, bands, sheets or powders in the amorphous or microcrystallized state, the grain size of which is less than 1000 nm, preferably 100 nm. They may be used either directly or as means for reinforcing other materials, or as surface coatings which are resistant to corrosion or wear.
摘要:
Metallic matrix composites are synthesized by mixing a first reactant, a second reactant and a nucleator compound to obtain a reaction mixture, and heating the reaction mixture to an auto-activation temperature to initiate a self-propagating high-temperature synthesis reaction between the first and second reactants. The metallic matrix composite can include a metallic matrix and an in situ formed reinforcement. The reinforcement can be formed of discrete particles substantially uniformly dispersed within the metallic matrix. Each of the particles can have a reinforcement constituent disposed about a core formed of the nucleator compound.