摘要:
A driving apparatus comprises: an electromechanical conversion element that expands and contracts in an extending direction of a given fiducial line; a driving shaft mounted on one end of the electromechanical conversion element in the extending direction; a driven member frictionally engaged with the driving shaft; a holder that supports the electromechanical conversion element from lateral sides with respect to extending direction; and an urging member that urges the electromechanical conversion element in the extending direction.
摘要:
The present invention provides a piezoelectric ultrasonic motor driver which can perform self-oscillation, adjust the rotational direction of the motor, and be easy to manufacture. The motor includes a metal body having a desired shape; a plurality of piezoelectric plates attached to surfaces of the metal body, contracted and expanded to rotate the metal body; a self-oscillation unit for oscillating at an electromechanical frequency of the piezoelectric plates an electrical signal; and a delay unit for delaying an oscillation signal of the self-oscillation unit in phase by 90 or −90 degrees according to a desired rotational direction.
摘要:
The present invention relates to apparatus achieving improvement in operation characteristics in the operation of stopping or reversing the direction of or decelerating movement of a vibrating wave actuator constructed to apply an alternating voltage to an electro-mechanical energy conversion element to vibrate a vibration member to obtain a driving force. In the operation of stopping the vibrating wave actuator, it is necessary to cancel the vibration to stop the actuator, in order to stop the actuator in good response. The present invention has achieved the above object by applying an excitation signal, which excites vibration in a direction to cancel free vibration in the vibration member, to the electro-mechanical energy conversion element in the stop operation or the like.
摘要:
An electromechanical actuator 10 is disclosed, having drive elements (14a-d) movable in two dimensions and connected to an actuator backing (12). The actuator backing (12) is made of a material being ferromechanically inactive. Furthermore, the joint between the drive element (14a-d) and the actuator backing (12) is stiff and highly stable. This is achieved by use of an irreversible joint made e.g. by thermoset plastic glues, diffusion bonding or co-sintering. Co-sintering is to prefer. The actuator backing (12) material is selected to be stiff, preferably having a stiffness above 70 GPa and more preferably above 100 GPa, and having a high heat conductivity, preferably above 5 W/mK and more preferably above 10 W/mK, Electrodes (22) are preferably integrated in the actuator backing to increase stiffness as well as improving the heat conductivity. The drive elements (14a-d) are preferably covered (28, 26), at least at the driving surface, by heat-conducting material.
摘要:
A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator. Conversely, the piezoelectric element can receive vibration or electrical signals passed through the driven element to determine the position of the driven element. The resonator is resiliently urged against the driven element, or vice versa. Plural resonators can drive common driven elements.
摘要:
A vibration driven actuator includes a vibration member for causing an electro-mechanical energy conversion element to excite bending and longitudinal vibrations, and producing a driving force by using specific vibrations obtained by synthesizing the bending and longitudinal vibrations, and a projection portion formed at a position, on at least one of the energy conversion element and the vibration member, which corresponds to a node of the bending vibrations. The projection portion is used for supplying a signal to the energy conversion element.
摘要:
A vibration actuator is provided which is capable of generating a bending vibration having a sufficient amplitude to allow production of a large driving force in a direction perpendicular to the axis of the bending vibration. Specifically, the vibration actuator generates a primary mode longitudinal vibration and a fourth mode bending vibration harmonically in an elastic body, so that a portion of the elastic body having a driving protrusion moves cyclically along an elliptical path. The driving protrusion comes into contact with a relative moving body along a section of the elliptical path, and thus exerts a driving force on the relative moving body. Reduced rigidity portions formed in the elastic body preferably at positions corresponding to antinodes of the bending vibration allow the bending vibration, and therefore also the driving force, to have greater amplitudes.
摘要:
A vibration driven motor is arranged so that a vibration member and a movable member are moved relative to each other by utilizing non-travelling vibration. A supporting member for the motor is disposed at the position of the loop of the aforesaid vibration.
摘要:
A piezoelectric rotating motor includes a plurality of piezoelectric elements, a disk-shaped stator having a center portion in which the piezoelectric elements are accommodated, a circular friction zone which is formed on an outer peripheral portion of its one surface and a connecting portion which connects the center portion with the friction zone so as to form a lever transmitting and amplifying the axial strain of the piezoelectric elements to the portion of the friction zone located in the same angular sector as the piezoelectric elements and which has a cone shape at rear side of the friction zone so as to thin its thickness from the center portion to the outer peripheral portion and producing a progressive wave forming an elliptical vibration on the friction zone by the composition of its three dimensional strain due to the piezoelective effect of the piezoelectric elements and a rotor being contracted with the friction zone under pressure.
摘要:
The ultrasonic actuator of the present invention includes a rod shaped vibration body having a plurality of faces, an exciter which is provided on a one of the faces for vibration excitation of the vibration body and which generates traveling waves which progress along this face for vibration excitation, and a movable member which is pressed against the vibration body and is moved by the traveling waves. The vibration body is so formed that the traveling waves which progress along the face for vibration excitation of the vibration body are transmitted to a face of the vibration body other than its face for vibration excitation, and are recirculated back to the face for vibration excitation again.