Abstract:
A pressure diffuser washer comprising: an outer wall, an inner wall adjacent to the outer wall, the inner wall defining annular baffle chambers between the outer wall and the inner wall, wherein each of the annular baffle chambers is configured to connect to a source of a wash liquid, a reciprocating screen assembly adjacent to the inner wall, the reciprocating screen assembly defining a first annular chamber between the inner wall and the reciprocating screen assembly, an area in the inner wall defining a gap associated with each of the annular baffle chambers, wherein the wash liquid from an annular baffle chamber flows through the gap into the first annular chamber, and an annular baffle screen plate covering the gap, wherein the annular baffle screen plate defines openings sized to prevent rocks and other large particulate debris from entering the annular baffle chambers.
Abstract:
A reactor vessel including: a mixing chamber having a vertical length, an upper inlet, and a lower outlet; and a vertically oriented paddle within the mixing chamber and having a cross-sectional shape of a hydrofoil, wherein the paddle moves with respect to the mixing chamber.
Abstract:
A method for producing micro fibrillated cellulosic material from pulp where multiple passes through a medium consistency refiner are made either singularly or in combination with low consistency refiners and high consistency refiners.
Abstract:
A flash tank for concentrating fluids including a wall defining a rounded interior chamber bounded by a top elliptical head opposite to a bottom elliptical head; an inlet nozzle of the chamber; a steam chamber operatively engaged to the top elliptical head, wherein the steam chamber includes baffles and a conduit that directs condensate from the steam chamber to the level of liquid condensate; a gas discharge port operatively engaged to the steam chamber; and a liquid discharge port engaged to the bottom elliptical head below a vortex breaker. Changes to the flow passage of the steam chamber have been made by extending the baffles further into the internal chambers of the steam chamber.
Abstract:
A flash tank including: a closed interior chamber; a gas exhaust port coupled to an upper portion of the chamber; a liquid discharge port coupled to a lower portion of the chamber; an inlet nozzle attached to an inlet port of the chamber, wherein the inlet nozzle includes a flow passage, and a movable valve plate in the flow passage, wherein the valve plate has a first position which defines a first throat in the flow passage and a second position which defines a second throat having a smaller cross-sectional area than the first throat.
Abstract:
A method to process cellulosic material in a treatment vessel including: introducing the cellulosic material to a processing chamber of the vessel; adding heat energy or pressure to the vessel to hydrolyze the cellulosic material in the processing chamber and dissolve hemi-cellulosic from the cellulosic material; compressing the cellulosic material in the processing chamber; extracting the dissolved hemi-cellulosic material through a screen from the processing section; draining the extracted hemi-cellulosic material from the vessel; and discharging the cellulosic material from the vessel separately from the extracted hemi-cellulosic material.
Abstract:
A system for washing processed biomass and removing dissolved solids from the biomass including: a pre-hydrolysis reactor vessel having an outlet to discharge a biomass slurry, wherein the pre-hydrolysis reactor vessel is operated at conditions that promote hydrolysis of the biomass; a retention tank receiving the biomass slurry discharged through the outlet of the pre-hydrolysis reactor vessel, wherein the retention tank receives recovered wash liquid and is configured to dilute the biomass slurry in the tank with the recovered wash liquid and discharge diluted biomass slurry, and a drain device including a biomass slurry inlet receiving the discharged diluted biomass slurry from the retention tank, a solids outlet to discharge concentrated biomass slurry, and a liquid drain to discharge liquid extracted from the discharged diluted biomass slurry, wherein the liquid drain is in fluid communication with the retention tank such that the discharged liquid flows to the retention tank.
Abstract:
A high pressure transfer device has a rotor mounted in a housing for rotation with respect to inlet and outlet ports and having through going pockets. The pockets have interior surface configurations substantially devoid of nooks, crannies, and related flow restrictions. This can be accomplished by providing inserts in the pockets, or by constructing the pockets so that there are substantially smooth interior wall tubes extending from one end of the rotor and the other and cooperating with an inlet and an outlet at the same time. Using the high pressure transfer device to feed wood chips or the like in a slurry using a high pressure transfer pump can result in flow through the rotor pockets that is more uniform by at least 5% compared to in conventional high pressure transfer devices.
Abstract:
A system and method for feeding comminuted cellulosic fibrous material such as wood chips to the top of a treatment vessel such as a continuous digester provide enhanced simplicity, operability, and maintainability by eliminating the high pressure transfer device conventionally used in the prior art. Instead of a high pressure transfer device the steamed and slurried chips are pressurized using a single vane slurry pump in series with a centrifugal slurry pump both of which are located at least thirty feet below the top of the treatment vessel and for pressurizing the slurry to a pressure of at least about 10 bar gauge.
Abstract:
A roll assembly temperature sensing system for a pellet mill includes: a thermal sensor (160); and a pellet mill roll assembly rotatably disposed in a rotor assembly. The pellet mill roll (140) assembly includes: a roll shaft; a bearing disposed circumferentially around the roll shaft; and a seal (150) disposed between an end of the bearing and the rotor assembly. The rotor assembly includes an area defining a die cavity adjacent to the seal (150). The thermal sensor (160) is disposed within the die cavity, and is configured to detect a temperature of the seal resulting from heat conducted from the bearing.