Abstract:
This disclosure describes a context aware scalable dynamic network whereby network information concerning network elements in an untrusted (Black) network are gathered by network sensors, stored at a network sensor collector, and sent to another network sensor collector in a trusted (Red) network through a one-way guard. At the Red network, the network information from the Black network may be combined with network information from one or more Red networks. The combined network information may then be used to visualize a cross-domain network topology of both Red and Black networks, and to implement network management functions.
Abstract:
A server system receives messages from client computing devices. Each of the messages corresponds to a transaction. The server system assigns each respective transaction to a respective fresh virtual machine. Furthermore, the server system performs, as part of a respective virtual machine processing a respective transaction, a modification associated with the respective transaction to a shared database. The shared database is persisted independently of the plurality of virtual machines. In response to determining that processing of the respective transaction is complete, the server system discards the respective virtual machine. In response to determining that the respective transaction is associated with a cyber-attack, the server system uses checkpoint data associated with the respective transaction to roll back the modifications associated with the respective transaction to the shared database.
Abstract:
In an example, an apparatus includes a memory storing a hypervisor, where the hypervisor is configured to determine whether one or more universal serial bus (USB) devices in communication with the hypervisor are authorized to communicate with a guest operating system of the hypervisor and, after determining that the one or more USB devices are authorized to communicate with the guest, virtualize the one or more USB devices at the guest operating system and transfer messages between the one or more USB devices and the virtualized USB device.
Abstract:
In general, techniques are described for an RDF (Resource Description Framework) database system which can scale to huge size for realistic data sets of practical interest. In some examples, a database system includes a Resource Description Framework (RDF) database that stores a plurality of data chunks to one or more storage drives, wherein each of the plurality of data chunks includes a plurality of triples of the RDF database. The database system also includes a working memory, a query interface that receives a query for the RDF database, a SPARQL engine that identifies a subset of the data chunks relevant to the query, and an index interface that includes one or more bulk loaders that load the subset of the data chunks to the working memory. The SPARQL engine executes the query only against triples included within the loaded subset of the data chunks to obtain a query result.
Abstract:
Disclosed herein are embodiments of an aerial network system including a first transceiver configured to transmit and receive free space optical (FSO) signals and a second transceiver configured to transmit and receive radio frequency (RF) signals. A processor provides modulated data signals to the first and second transceivers for transmission and receives demodulated signals from the first and second transceiver. The processor is configured for policy-based multipath admission of requests for access to an IP-routing enabled overlay network. The processor includes an inverse mission planning system configured for predictive traffic load balancing of transmitted FSO signals and RF signals. The inverse mission planning system includes radio behavior models and aerial platform models, and is configured for geographic simulation and optimization of mission planning data based upon user-inputted mission-specific data. Forward error correction (FEC) coding of transmitted communications via packet erasure coding provides resiliency with a low bit error rate.
Abstract:
In a network, a common agnostic data exchange method between two devices native to the network, the devices using different formats and transmission protocols, includes invoking a proxy at each device, and a first proxy receiving a first data record from a first device, the first data record having a first format. The first proxy identifies the first format by comparing a first pattern of the first data record to reference patterns of one or more reference data records and determines if a sufficient pattern match exists between the first pattern and the reference pattern. The first proxy translates the first data record's format into an inter-proxy data record having an inter-proxy format and transmits the inter-proxy data record to a second proxy coupled to a second device. The second proxy translates the inter-proxy data record to a second data record having a format employed at the second device.
Abstract:
A plurality of distributed network nodes may provide a decentralized access gateway to multiple, diverse types of databases. The plurality of distributed network nodes may host a private party blockchain. Each node may execute a peer-to-peer (P2P) client to perform operations associated with the private party blockchain. A subset of the nodes may be configured as validator nodes that may implement gossip protocols to cooperatively validate one or more database operations and generate a new block for the private party blockchain. Another subset of nodes may be configured as host nodes that may receive the new block and update a corresponding local copy of the private party blockchain appending the new block. Utilizing the co-operative validation of database operations and the updates appending the new blocks, the private party blockchain may maintain an immutable digital record of access and updates to the multiple and diverse types of databases.
Abstract:
This disclosure describes a profiling system comprising a memory, the memory storing instructions for profiling an application under test (AUT), and one or more processors communicatively coupled to the memory. The processors are configured to execute the instructions. The instructions when executed cause the one or more processors to initiate, within the one or more processors, a launcher for profiling an aspect of the AUT, transfer, to the AUT, one or more profiling tests and one or more profiler modules associated with the one or more profiling tests, start the one or more profiling tests in the AUT under launcher control, including setting up profiling during initialization of a process in the AUT, receive, at the profiling system, data collected for each profiling test, and determine one or more test scores for the aspect of the AUT based on the data collected for each profiling test.
Abstract:
A method for use of airport runway capacity includes receiving, at an air traffic control system at an airport, airport data related to movement areas of the airport, time data related to a time period, aircraft data related to a plurality of aircraft expected to operate into and out of the airport during the time period, and environmental data related to environmental conditions predicted for the airport during the time period. The method further includes computing a probability distribution for inter-aircraft spacing by applying the airport data, the time data, the aircraft data, and the environmental data to a trained Bayesian network, producing the probability distribution for the inter-aircraft spacing as an output observation of the trained Bayesian network, and, using the probability distribution and a confidence value, identifying an inter-aircraft spacing value for the plurality of aircraft expected to operate into and out of the airport during the time period.
Abstract:
Embodiments disclosed herein describe systems and methods for assessing vulnerabilities of embedded non-IP devices. In an illustrative embodiment, a system of assessing the vulnerabilities of embedded non-IP devices may be within a portable device. The portable device may include a plurality of wired connectors for various wired communication/data transfer protocols. The portable device may include tools for analyzing the firmware binaries of the embedded non-IP devices, such as disassemblers and modules for concrete and symbolic (concolic) execution. Based upon the disassembly and the concolic execution, the portable device may identify vulnerabilities such as buffer overflows and programming flaws in the firmware binaries.