Method for processing an inferior gasoline and a system for processing the same

    公开(公告)号:US20180312768A1

    公开(公告)日:2018-11-01

    申请号:US15881532

    申请日:2018-01-26

    Inventor: Yu FAN Shihua WANG

    Abstract: A method for processing an inferior gasoline and a system for processing the same. In the method, a full range gasoline is subjected to a directional sulfur transfer reaction, then is cut to obtain a light gasoline fraction, a medium gasoline fraction and a heavy gasoline fraction; the light gasoline fraction is treated to obtain an alkylated light gasoline; the medium gasoline fraction is treated to obtain a raffinate oil and an extracted oil; the raffinate oil is treated to obtain an esterified medium gasoline; the heavy gasoline fraction is mixed with the extracted oil to obtain a mixed oil, and an one-stage hydrodesulfurization reaction, a two-stage hydrodesulfurization reaction, H2S-removal and a hydrocarbon isomerization/aromatization reaction are carried out successively to obtain a treated heavy gasoline; blending the alkylated light gasoline, the esterified medium gasoline and the treated heavy gasoline to obtain a clean gasoline.

    ZSM-5 type molecular sieve synthesis method

    公开(公告)号:US09963350B2

    公开(公告)日:2018-05-08

    申请号:US14648425

    申请日:2013-11-28

    CPC classification number: C01B39/40 B01J20/18 B01J29/40 B01J35/002 C01B39/38

    Abstract: The present invention pertains to the field of molecular sieve synthesis, and relates to a synthesis method of ZSM-5 type molecular sieves. In this method, natural minerals, i.e., natural kaolin and natural diatomite, are used as the total silicon source and aluminum source required for the molecular sieve synthesis, and these two natural minerals are calcinated and subjected to acidic (alkaline) treatment before they are mixed at a certain ratio, and then crystallized under hydrothermal conditions to obtain the product, a ZSM-5 type molecular sieve. The ZSM-5 type molecular sieve obtained by the method according to the present invention is a hierarchical porous material having a crystallinity of 70% to 120% as compared to conventional ZSM-5 type molecular sieves synthesized by using pure chemical reagents, and the silica-to-alumina ratio in the molecular sieve product may be adjusted by varying the ratio of the two minerals in the raw materials for the synthesis. According to the present invention, the range of raw materials for the preparation of molecular sieve materials is broadened, and therefore not only the cost for the molecular sieve production is greatly reduced but also the greenness in the production process of the molecular sieve material is significantly improved.

    Method for preparation of mordenite
    117.
    发明授权

    公开(公告)号:US09845249B2

    公开(公告)日:2017-12-19

    申请号:US14902423

    申请日:2013-12-02

    CPC classification number: C01B39/265 C01B39/26

    Abstract: The present invention provides a method for preparing a mordenite, which is a method for preparing the mordenite through a hydrothermal crystallization by using natural aluminosilicate minerals as total silicon sources and total aluminum sources, comprising the steps of: subjecting the natural aluminosilicate minerals to activation treatment which is an activation by sub-molten salt and an activation by thermal treatment; selecting and mixing the activated natural aluminosilicate minerals according to the silicon-to-aluminum ratio of the targeted mordenite, adding thereto deionized water, sodium hydroxide, crystal seed, a templating agent to obtain a reaction mixture; adjusting the reaction mixture by using an inorganic acid to have a pH of 10-13, and then aging it at 40-80° C. for 6-24 hours; and subjecting the aged reaction mixture to hydrothermal crystallization, and then filtering, washing, drying and calcinating the crystallized product to obtain the mordenite. The method for preparing a mordenite provided in the present invention enlarges the sources of raw materials for a molecular sieve, has a low cost and a simple process route, and can largely reduce the cost for synthesizing a molecular sieve.

Patent Agency Ranking