Abstract:
The disclosure relates to a user equipment for a wireless communications system, and to a related method for identifying a resource to use for a transmission of control information on a physical uplink control channel, PUCCH, format 3. The method comprises receiving (610) a resource index from a serving radio base station, and identifying (620) the resource to use for the transmission of the control information in a subframe based on the received resource index, wherein the identified resource is within a same confined set of physical resource blocks regardless of if a normal or a shortened PUCCH format 3 is used in the subframe.
Abstract:
The auto-correlation properties of a reference signal or pilot pattern, such as a position reference signal (PRS) in a Long Term Evolution communication system, is improved by modifying the currently specified PRS patterns, and/or by PRS pattern shaping. Pattern shaping can result in creation of virtual PRS patterns, for example, by controlling the PRS transmitted or received power used by the correlator. PRS power shaping can be implemented differently according to the location where the PRS power is calculated, e.g., in a network node or in a user equipment.
Abstract:
The invention is a method and apparatus for signaling uplink control information in a mobile communication network using carrier aggregation. The signaling mechanism allows the transmission, on a single uplink component carrier, of control information associated with a downlink transmission on multiple aggregated downlink component carriers. Semi-statically reserved resources for the transmission of control information on the uplink component carrier may be dynamically shared by user terminals that are assigned multiple downlink component carriers for downlink transmissions. Implicit or explicit resource indication can be used in combination with dynamic resource indication.
Abstract:
The technology applies to a cellular radio communication system in which a mobile radio terminal transmits information in transmission time intervals (TTIs) that is received by a serving base station and by one or more non-serving base stations. A number N of hybrid automatic repeat request (HARQ) transmissions transmitted together by the mobile terminal is determined. An HARQ transmission includes a first transmission, one or more retransmissions of the first transmission, or both. An indication of the number N of HARQ transmissions is provided either directly or indirectly to the one or more non-serving base stations so that the one or more non-serving base stations can take the number N into account when combining HARQ transmissions received from the mobile terminal.
Abstract:
The present invention relates to multicast communication systems and in particular to the implementation of a random access uplink channel, which can be used, e.g., for transmission of acknowledgement messages for received data. In order to prevent frequent collisions on said channel, the transmission of acknowledgement messages is spread at least over time or, additionally, with regard to another distinguishing channel property, e.g. a RACH sub-channel or RACH-signature.
Abstract:
The present invention relates to methods and arrangements for uplink retransmissions from a user equipment to a radio base station in a UTRAN with enhanced uplink. The UE transmits a subframe comprising physical control channel(s) and physical data channel(s) in an initial transmission. According to the present invention, one or more of the physical control channels are transmitted with a lower transmission power level in all or some of the retransmitted subframes in the uplink. This results in reduced control overhead (a smaller part of the transmission power resource is used for control signaling) and thus reduced interference from the overhead. At the same time, the transmission power resource no longer used for the physical control channel information, can be used to increase the transmission power level of the physical data channel information in these retransmitted subframes, which improves the uplink coverage.
Abstract:
A network node (28) communicates over a radio interface (32) with a wireless terminal (30). Both the network node (28) and the wireless terminal (30) have multiple-input multiple-output (MIMO) capabilities. A MIMO-related order (90) is generated for inclusion in control signaling on a high speed downlink shared channel from the network node (28) to the wireless terminal (30). The MIMO-related order (90) is configured to modify channel quality indication (CQI) communications between the wireless terminal (30) and the base station (28) in view of MIMO capabilities of the wireless terminal (30). The method further comprises providing a channel quality indication (CQI) report (92) the wireless terminal (30) to the base station (28) in accordance with the order.
Abstract:
A wireless communication network determines positioning data for a given mobile terminal, in response to receiving a positioning event trigger for that mobile terminal. The network sends the positioning data to the mobile terminal via control-plane signaling, for transfer by the mobile terminal to the user plane. Correspondingly, the mobile terminal receives the positioning data over the control plane, transfers it to the user plane, and transmits the positioning data or location information derived from the positioning data, via user-plane signaling. As such, network-performed positioning measurements and/or geographic coordinate data derived therefrom are transferred from the control plane, to the user plane, for flexible and transparent transmission from the mobile terminal to a given node having a user-plane connection with the mobile terminal. Such a node may be essentially any type of communication device, system, or server, internal or external to the network.
Abstract:
A method and arrangement are described herein for power control for the F-DPCH (Fractional-Dedicated Physical Control Channel) for a 3rd generation mobile telecommunication system applying HSDPA, in particular for a user equipment in soft handover.
Abstract:
A radio resource management technique in a cellular telecommunication system is disclosed. The telecommunication system comprises at least one radio network controlling component and one or more base station components operable to implement an uplink scheduling scheme in relation to one or more user terminals. A method embodiment comprises the steps of receiving, by one of the base station components from the at least one radio network controlling component, at least one interference control parameter, of generating one or more scheduling grants taking into account the at least one interference control parameter, and of issuing the one or more scheduling grants to one or more user terminals.