Abstract:
A data encoding/decoding method in a multiple antenna communication system is provided. In the multiple antenna communication system, a transmitting end includes an encoder for performing Space Time Block Code (STBC) encoding on certain symbols among Transmit (Tx) symbols, a multiplexer for performing spatial multiplexing on the rest of symbols among the Tx symbols, and a transmitter for transmitting the STBC encoded symbols and the spatial-multiplexed symbols through a plurality of antennas.
Abstract:
A semiconductor includes a channel region in a semiconductor substrate, a gate dielectric film on the channel region, and a gate on the gate dielectric film. The gate includes a doped metal nitride film, formed from a nitride of a first metal and doped with a second metal which is different from the first metal, and a conductive polysilicon layer formed on the doped metal nitride film. The gate may further include a metal containing capping layer interposed between the doped metal nitride film and the conductive polysilicon layer.
Abstract:
A method of fabricating a semiconductor device including a high-k dielectric for as a gate insulating layer is provided. The method includes forming a high-k dielectric layer and a conductive layer on a substrate, dry etching a portion of the conductive layer, performing a process to increase a wet etch rate of a remaining portion of the conductive layer, and forming a conductive layer pattern by wet etching the remaining portion of the conductive layer after performing the plasma process or the ion implantation. The process to increase the wet etch rate of the conductive layer including a plasma process and/or an ion implantation on the remaining portion of the conductive layer.
Abstract:
A method of manufacturing a vertical GaN-based LED comprises preparing an n-type GaN substrate; sequentially forming an active layer and a p-type nitride semiconductor layer on the n-type GaN substrate through an epitaxial growth method; forming a p-electrode on the p-type nitride semiconductor layer; wet-etching the lower surface of the n-type GaN substrate so as to reduce the thickness of the n-type GaN substrate; forming a flat n-type bonding pad on the wet-etched lower surface of the n-type GaN substrate, the n-type bonding pad defining an n-electrode formation region; and forming an n-electrode on the n-type bonding pad.
Abstract:
An apparatus and method for providing multiple screens is provided. The apparatus for providing multiple screens includes a service processing module providing a plurality of services, an interface module through which an audio content is independently selected from the plurality of services, and an output module outputting the selected audio content.
Abstract:
An apparatus for providing multiple screens and a method of dynamically configuring multiple screens are provided. The apparatus for providing multiple screens includes a digital signal processing module which receives predetermined information and restores a service based on the predetermined information, a service processing module which displays one or more logical screens associated with the service, and an output module which arranges the logical screens provided by the service processing module at different locations on a display screen.
Abstract:
An apparatus for providing multiple screens and a method of dynamically configuring multiple screens. The apparatus for providing multiple screens is capable of connecting a plurality of screens to a plurality of output ports so as to dynamically configure the plurality of screens which provide multiple contents on a single physical display device. The apparatus for providing multiple screens includes a service processing module which generates a plurality of screens for displaying received service and an output module which searches an output port connected to the screen.
Abstract:
An apparatus and method for providing multiple screens is disclosed. The apparatus includes a user/application interface module receiving a PiP service providing mode, and an output module displaying a video component of a service on a main screen if the PiP service providing mode is a first mode and displaying a background video or the video component of the service on a PiP screen if the PiP service providing mode in a second mode.
Abstract:
An apparatus for providing multiple screens and a method of dynamically configuring multiple screens are provided. The apparatus for providing multiple screens is capable of providing a plurality of contents on a single physical display device and reconstructing a form or connection relationship among screens existing on a system. The apparatus for providing multiple screens includes an operation module which generates at least one screen for displaying a service and a setting module which senses a change of set of the screen.
Abstract:
A first transistor includes a first channel region of a first conductivity type located at a first surface region of a semiconductor substrate, a first gate dielectric which includes a first HfO2 layer located over the first channel region, and a first gate located over the first gate dielectric. The first gate includes a first polysilicon layer doped with an impurity of the first conductivity type. The second transistor includes a second channel region of a second conductivity type located at a second surface region of the semiconductor substrate, a second gate dielectric which includes a second HfO2 layer and an Al2O3 layer located over the second channel region, and a second gate located over the second gate dielectric. The second gate includes a second polysilicon layer doped with an impurity of the second conductivity type, and the second conductivity type is opposite the first conductivity type.