摘要:
A method of fabricating a semiconductor device including a high-k dielectric for as a gate insulating layer is provided. The method includes forming a high-k dielectric layer and a conductive layer on a substrate, dry etching a portion of the conductive layer, performing a process to increase a wet etch rate of a remaining portion of the conductive layer, and forming a conductive layer pattern by wet etching the remaining portion of the conductive layer after performing the plasma process or the ion implantation. The process to increase the wet etch rate of the conductive layer including a plasma process and/or an ion implantation on the remaining portion of the conductive layer.
摘要:
A method of fabricating a semiconductor device including a high-k dielectric for as a gate insulating layer is provided. The method includes forming a high-k dielectric layer and a conductive layer on a substrate, dry etching a portion of the conductive layer, performing a process to increase a wet etch rate of a remaining portion of the conductive layer, and forming a conductive layer pattern by wet etching the remaining portion of the conductive layer after performing the plasma process or the ion implantation. The process to increase the wet etch rate of the conductive layer including a plasma process and/or an ion implantation on the remaining portion of the conductive layer.
摘要:
A method of fabricating a gate of a semiconductor device using an oxygen-free ashing process is disclosed. The method includes forming a high-k dielectric film, having a dielectric constant higher than a silicon oxide film, on a semiconductor substrate including an NMOS region and a PMOS region, forming an etching target film on the high-k dielectric film, forming a photoresist pattern to expose any one region of the two regions, on the etching target film, etching the etching target film using the photoresist pattern as an etching mask, and removing the photoresist pattern using plasma formed in the presence of an oxygen-free reactive gas.
摘要:
A semiconductor includes a channel region in a semiconductor substrate, a gate dielectric film on the channel region, and a gate on the gate dielectric film. The gate includes a doped metal nitride film, formed from a nitride of a first metal and doped with a second metal which is different from the first metal, and a conductive polysilicon layer formed on the doped metal nitride film. The gate may further include a metal containing capping layer interposed between the doped metal nitride film and the conductive polysilicon layer.
摘要:
A semiconductor device and a method of manufacturing the semiconductor device, in which the semiconductor device includes a semiconductor substrate in which PMOS transistor regions and NMOS transistor regions are formed, a PMOS transistor including P-type source and drain regions and a gate electrode, and an NMOS transistor formed on an Si channel region between N-type source and drain regions. The PMOS transistor is formed in each PMOS transistor region, and the gate electrode is formed on a high-dielectric gate insulating film formed on an SiGe channel region between the P-type source and drain regions. Further, the NMOS transistor includes a high-dielectric gate insulating film and a gate electrode formed on the gate insulating film, and the NMOS transistor is formed in each NMOS transistor region.
摘要:
High dielectric layers formed from layers of hafnium oxide, zirconium oxide, aluminum oxide, yttrium oxide, and/or other metal oxides and silicates disposed on silicon substrates or ozone oxide layers over silicon substrates may be nitrided and post thermally treated by oxidation, annealing, or a combination of oxidation and annealing to form high dielectric layers having superior mobility and interfacial characteristics.
摘要:
High dielectric layers formed from layers of hafnium oxide, zirconium oxide, aluminum oxide, yttrium oxide, and/or other metal oxides and silicates disposed on silicon substrates or ozone oxide layers over silicon substrates may be nitrided and post thermally treated by oxidation, annealing, or a combination of oxidation and annealing to form high dielectric layers having superior mobility and interfacial characteristics.
摘要:
A first transistor includes a first channel region of a first conductivity type located at a first surface region of a semiconductor substrate, a first gate dielectric which includes a first HfO2 layer located over the first channel region, and a first gate located over the first gate dielectric. The first gate includes a first polysilicon layer doped with an impurity of the first conductivity type. The second transistor includes a second channel region of a second conductivity type located at a second surface region of the semiconductor substrate, a second gate dielectric which includes a second HfO2 layer and an Al2O3 layer located over the second channel region, and a second gate located over the second gate dielectric. The second gate includes a second polysilicon layer doped with an impurity of the second conductivity type, and the second conductivity type is opposite the first conductivity type.
摘要:
High dielectric layers formed from layers of hafnium oxide, zirconium oxide, aluminum oxide, yttrium oxide, and/or other metal oxides and silicates disposed on silicon substrates or ozone oxide layers over silicon substrates may be nitrided and post thermally treated by oxidation, annealing, or a combination of oxidation and annealing to form high dielectric layers having superior mobility and interfacial characteristics.
摘要:
High dielectric layers formed from layers of hafnium oxide, zirconium oxide, aluminum oxide, yttrium oxide, and/or other metal oxides and silicates disposed on silicon substrates or ozone oxide layers over silicon substrates may be nitrided and post thermally treated by oxidation, annealing, or a combination of oxidation and annealing to form high dielectric layers having superior mobility and interfacial characteristics.