Abstract:
The present disclosure relates to an apparatus and a method for ascertaining a transpiration rate of an object, in particular of a plant leaf or a plant needle. The method comprises the steps of ascertaining a first temperature difference between the temperatures on the surface of the object and on the surface of a reference body as well as a second temperature difference between the temperatures on the surface of the object or on the surface of the reference body and a respective measurement point (M1, M2) spaced apart therefrom, so as to finally calculate therefrom the transpiration rate of the object.
Abstract:
Provided are techniques for the transmission of electronic mail (email). While a user composes an email message and once an intended recipient has been entered, negotiation modules associated with client and server computers check both the recipient and attributes of the message as they are entered. The user is notified if there is an issue with the intended recipient and alternative recipients may be suggested. The user is also notified if a particular attribute exceeds a defined limit. In this manner, the user may alter the message so that the attribute conforms to the limit to ensure delivery. Tests may be provided to enable a user to exceed a limit and some users may be pre-authorized to exceed a limit.
Abstract:
Novel soy/milk gels are provided useful for making cheese-type and yoghurt type products. Method for preparing such products are also disclosed herein. In particular, the invention relates to a soy/milk cheese-type product which is a blend of soy milk and milk and to a method for the preparation thereof. In further aspects, is a soy/milk yoghurt-type product and a method for the preparation thereof.
Abstract:
A solar collector includes a substrate having a top surface and a bottom surface opposite to the upper surface, a sidewall, a transparent cover, and a heat-absorbing layer. The sidewall is arranged on the top surface of the substrate. The transparent cover is disposed on the sidewall opposite to the substrate to form a sealed chamber with the substrate together. The heat-absorbing layer is disposed on the upper surface of the substrate and includes a carbon nanotube film having a plurality of carbon nanotubes. The carbon nanotubes in the carbon nanotube film are entangled with each other.
Abstract:
An ionization vacuum gauge includes a cathode, an anode and an ion collector. The ion collector component is located at one side of the anode component and spaced from the anode component. The cathode component is located at another side of the anode component and includes an electron emitter, which extends toward the anode component from the cathode component. The electron emitter includes at least one carbon nanotube wire.
Abstract:
An ion source using a field emission device is provided. The field emission device includes an insulative substrate, an electron pulling electrode, a secondary electron emission layer, a first dielectric layer, a cathode electrode, and an electron emission layer. The electron pulling electrode is located on a surface of the insulative substrate. The secondary electron emission layer is located on a surface of the electron pulling electrode. The cathode electrode is located apart from the electron pulling electrode by the first dielectric layer. The cathode electrode has a surface oriented to the electron pulling electrode and defines a first opening as an electron output portion. The electron emission layer is located on the surface of the cathode electrode and oriented to the electron pulling electrode.
Abstract:
Methods, systems, and apparatus can be used to provide concurrent call handover in converged networks. In various examples, a concurrent call handover can operate to transfer multiple calls between domains when a mobile device has two open call instances. In some implementations, multiple public service identifiers can be assigned for the call instances.
Abstract:
An electrical connector includes an insulating housing and contacts made from metallic wire. The insulating housing includes a front portion with a mating cavity and a rear portion. Each contact includes a contacting portion, a leg portion and a connecting portion connecting with the contacting portion and the leg portion. Each leg portion includes a linking portion, a first soldering portion and a second soldering portion. The linking portion connects with the connecting portion and the first soldering portion, and the second soldering portion connects with the first soldering portion. Two soldering portions are on a same plane and parallel to each other.
Abstract:
An electrical connector includes an insulative housing and a plurality of contacts. The insulative housing defines a mating face, a mounting face opposite to the mating face and a plurality of receiving passageways running through the mating face and the mounting face. The contacts are assembled in the receiving passageways and each contact include a base portion, a pair of retaining portions extending from two opposite ends of the base portion, a pair of elastic arms extending from the retaining portions, a soldering portion extending out of the receiving passageways and a connecting portion connecting the soldering portion and the base portion. Each receiving passageway protrudes a tuber from a first inner face thereof. Free ends of the retaining portions are located at two sides of the tuber and engage with the first inner face of the receiving passageway. The tuber is spaced from the two retaining portions at two sides of the tuber. A pair of tabs defined at a free end of the tuber press against the pair of retaining portions to form a pair of receiving grooves between the two sides of the tuber and the retaining portions.