Abstract:
This invention is directed to heterocyclic compounds that are useful for the treatment and/or prevention of sodium channel-mediated diseases or conditions, such as pain. Pharmaceutical compositions comprising the compounds and methods of using the compounds are also disclosed.
Abstract:
Isolated fragments of the HFE2A protein able to bind and modulate HFE2A and other proteins, such as hepcidin, involved in the iron metabolism pathway are disclosed, such fragments being of molecular weight of approximately 7 kDa to 43 kDa. Also disclosed are corresponding isolated polynucleotides encoding the fragments of the HFE2A protein. The invention includes derivatives and analogs of the polypeptide fragments of HFE2A, along with compositions of these, that are functionally active, i.e. capable of interacting with the HFE2A, as well as methods of production of the HFE2A cleavage products, derivatives and analogs, e.g. by recombinant means. Methods for identifying modulators of HFE2A, comprising contacting a test compound with HFE2A and determining a change in HFE2A activity due to the compound, are provided. Also taught are methods of diagnosing an animal afflicted with or at risk of developing a disease of iron metabolism comprising determining a change in the level, amount or activity of a fragment of an HFE2A obtained in a sample from said animal relative to the level, amount or activity of a fragment of an HFE2A obtained in a control sample from an unaffected animal, wherein a change identifies said individual as being affect by or at risk of developing a disease of iron metabolism. Methods for treating and/or preventing a disorder in animals comprising administering to an animal afflicted therewith, or at risk of developing said disorder, a therapeutically effective amount of an HFE2A modulator are provided.
Abstract:
Described herein are isolated polynucleotides which code for a family of AMPA-type human CNS receptors. The receptors are characterized structurally and the construction and use of cell lines expressing these receptors are disclosed.
Abstract:
Described herein are isolated polynucleotides which code for an AMPA-type human CNS receptor, designated the human GluR4B receptor. The receptor is characterized structurally and the construction and use of cell lines expressing the receptor is disclosed.
Abstract:
Neurotransmission by excitatory amino acids (EAAs) such as glutamate is mediated via membrane-bound surface receptors. DNA coding for one family of these receptors, of the kainate binding type of EAA receptors, has now been isolated and the receptor protein characterized. Herein described are recombinant cell lines which produce the EAA receptor as a heterologous membrane-bound product. Also described are related aspects of the invention, which are of commercial significance. Included is use of the cell lines as a tool for discovery of compounds which modulate EAA receptor stimulation.
Abstract:
Neurotransmission by excitatory amino acids (EAAs) such as glutamate is mediated via membrane-bound surface receptors. DNA coding for one family of these receptors of the kainate-binding type of EAA receptors, has now been isolated and the receptor protein characterized. Herein described are recombinant cell lines which produce the EAA receptor as a heterologous membrane-bound product. Also described are related aspects of the invention, which are of commercial significance. Included is use of the cell lines as a tool for discovery of compounds which modulate EAA receptor stimulation.