摘要:
A startup process of an access point (AP) includes a discovery phase and an announcement phase. During the discovery phase, the AP detects neighboring APs from its own extended service set (ESS), neighboring APs from different ESSs, and external sources of interference. During the announcement phase, the AP transmits its beacon signals at maximum power in order to accelerate recognition by neighboring APs running the discovery phase. An automatic initialization channel selection process of an AP scans channels the AP will use to communicate. Information of each scanned channel is recorded and a best performance channel is determined for use by the AP.
摘要:
A method and apparatus for radio link synchronization and power control in CELL_FACH state and idle mode are disclosed. A wireless transmit/receive unit (WTRU) transmits a random access channel (RACH) preamble and receives an acquisition indicator acknowledging the RACH preamble via an acquisition indicator channel (AICH) and an index to an enhanced dedicated channel (E-DCH) resource. The WTRU determines a start of an E-DCH frame. An F-DPCH timing offset is defined with respect to one of the RACH access slot and an AICH access slot carrying the acquisition indicator. A relative F-DPCH timing offset may be signaled to the WTRU and the WTRU may determine a start of an E-DCH frame based on the relative F-DPCH timing offset and timing of an AICH access slot including the acquisition indicator. The WTRU may transmit a dedicated physical control channel (DPCCH) power control preamble before starting an E-DCH transmission.
摘要:
A method and apparatus for control of uplink feedback information in contention based wireless communications is disclosed. Uplink feedback information such as a channel quality information and hybrid automatic retransmission request (HARQ) acknowledgement/negative acknowledgement (ACK/NACK) information may be transmitted to the universal terrestrial radio access network (UTRAN) by a wireless transmit/receive unit (WTRU) based on explicit and implicit triggers. Providing more frequent and robust information relating to the channel conditions and HARQ status allows the UTRAN to more efficiently utilize the radio resources for downlink data transmissions.
摘要:
A method and apparatus for supporting home Node B (HNB) services are disclosed. A wireless transmit/receive unit (WTRU) receives HNB access restriction information from an HNB and accesses the HNB if an access to the HNB is allowed based on the HNB access restriction information. The HNB access restriction information may be a closed subscriber group identity (CSG ID), a status bit indicating whether an HNB cell is available or not, an identity of WTRUs that are allowed to access the HNB, information indicating whether an access to a cell is barred or not. The WTRU may trigger measurements for cell reselection even though signal strength on a currently connected cell is above a threshold. The measurement may be triggered manually, periodically, under the instruction from the network, or based on a neighbor cell list including information about HNB cells located nearby.
摘要:
A method and apparatus for allocating resources to a wireless transmit receive unit (WTRU) includes the WTRU transmitting a signature sequence to a Node B, receiving an acknowledge signal from the Node B, and determining a default resource index. The resource index is associated with enhanced dedicated channel (E-DCH) parameters.
摘要:
Efficient enhanced transport format combination (E-TFC) selection methods and apparatus support flexible radio link control (RLC) packet data unit (PDU) size and medium access control (MAC) layer segmentation. Methods for filling an enhanced medium access control (MAC-e) packet data unit (PDU) with data from logical channels as part of E-TFC selection are provided. In one embodiment, the E-TFC selection algorithm employs a single request from the MAC layer to the RLC layer to request the number of bits it is allowed to send for a logical channel to create enhanced MAC-e PDUs. In another embodiment, the MAC entity performs multiple requests to the RLC entity. In another embodiment, the MAC entity makes a single request to the RLC entity to create one or more enhanced MAC-e PDUs of a set size. A technique is also provided for maintaining a guaranteed bit rate (GBR) for non-scheduled data flows with variable-length headers.
摘要:
A method and an apparatus is provided for terminating an enhanced random access channel (E-RACH) message in an E-RACH transmission. Triggers for terminating the E-RACH message are provided. The actions upon termination of the E-RACH messages are provided to release enhanced dedicated channel (E-DCH) resources while in cell forward access channel (CELL_FACH) state or transition to cell dedicated channel (CELL_DCH) state.
摘要:
Enhanced MAC-es PDUs are created by concatenating enhanced MAC-es service data units (SDUs) based on higher layer PDUs and segments thereof, where segmentation information is included in the enhanced MAC-es headers. An enhanced MAC-e header is generated for each enhanced MAC-es PDU to describe information about the enhanced MAC-es PDU. An enhanced MAC-e PDU is created by concatenating enhanced MAC-es PDUs and enhanced MAC-e headers. An enhanced MAC-es header may include a Transmit Sequence Number (TSN) field, a Segmentation Description (SD) field, length (L) fields to indicate the length of each enhanced MAC-es SDU and/or logical channel indicator (LCH-ID) fields. An enhanced MAC-e header may include one or more logical channel indicator (LCH-ID) fields for corresponding enhanced MAC-es PDUs or MAC-s SDUs and length (L) fields. Various techniques are disclosed for indicating the end of the enhanced MAC-e header. In another embodiment, methods for signaling over the Iub frame protocol are proposed to support MAC segmentation and flexible RLC PDU sizes.
摘要:
A method and apparatus for paging a wireless transmit/receive unit (WTRU) in a CELL_PCH and URA_PCH states are disclosed. A WTRU may send an indication of an enhanced paging channel (PCH) capability of receiving a high speed downlink shared channel (HS-DSCH) in CELL_PCH and URA_PCH states, for example, in a CELL UPDATE message, a URA UPDATE message, or a UTRAN MOBILITY INFORMATION CONFIRM message. A drift radio network controller (DRNC) may receive an indication whether the WTRU has an enhanced PCH capability from a serving RNC and page the WTRU based on the indication. An RNC may page the WTRU over both an HS-DSCH and a PCH/secondary common control physical channel (S-CCPCH) if a WTRU capability is not known. The WTRU may monitor both an HS-DSCH and a PCH/S-CCPCH. The WTRU may configure reception over an HS-DSCH based on the capability of the SRNC or configuration from the network.
摘要:
Methods and apparatus are disclosed to facilitate wireless communications between a wireless transmit receive unit (WTRU), legacy base stations and base stations using different operating parameters, such as evolved high speed packet access (HSPA) systems Third Generation Partnership Project ((3GPP) Release 7, Release 8 and beyond). Preferred WTRUs are configured with a medium access control (MAC) sub-layer component having a subcomponent with HARQ buffers, such as a subcomponent configured to provide MAC-es and MAC-e functionality and/or MAC-is and MACi functionality that include hybrid automatic repeat request (HARQ) processes, some of which are preferably operable with enhanced dedicated transport channels (E-DCH). The WTRUs are preferably configured such that they reconfigure their MAC subcomponents during soft handover while minimizing induced latency and data losses associated with HARQ processes. In some embodiments, the WTRUs are configured to prevent flushing of HARQ process buffers in soft handover scenarios with a Node B that does not support UL enhancements, e.g. higher order modulation (HOM). In other embodiments, flushing of HARQ processes is used but amelioration of adverse effects is addressed.