Abstract:
A spatial light modulator includes an upper optically transmissive substrate held above a lower substrate containing addressing circuitry. One or more electrostatically deflectable elements are suspended by hinges from the upper substrate. In operation, individual mirrors are selectively deflected and serve to spatially modulate light that is incident to, and then reflected back through, the upper substrate. Motion stops may be attached to the reflective deflectable elements so that the mirror does not snap to the bottom substrate. Instead, the motion stop rests against the upper substrate thus limiting the deflection angle of the reflective deflectable elements.
Abstract:
A spatial light modulator includes an upper optically transmissive substrate held above a lower substrate containing addressing circuitry. One or more electrostatically deflectable elements are suspended by hinges from the upper substrate. In operation, individual mirrors are selectively deflected and serve to spatially modulate light that is incident to, and then reflected back through, the upper substrate. Motion stops may be attached to the reflective deflectable elements so that the mirror does not snap to the bottom substrate. Instead, the motion stop rests against the upper substrate thus limiting the deflection angle of the reflective deflectable elements.
Abstract:
Disclosed herein is a method of projecting images using reflective light valves. Pixel patterns generated of the light valve pixels based on image data are projected at different locations at a time such that the perceived resolution of the projected images can be higher than the total number of pixels in the light valve.
Abstract:
The micromirror-based projection system of the present invention uses polarized illumination light in producing desired images on a display target. The display target has coated thereon a polarization film that absorbs most of the ambient light that would be incident onto the display target otherwise. Polarized illumination light is provided incident to the reflective surfaces of the spatial light modulator. The polarization direction of the illumination light can be associated with the rotation axes of the micromirrors and the polarization direction of the polarized film on the display target.
Abstract:
A projection system, a spatial light modulator, and a method for forming a MEMS device is disclosed. The spatial light modulator can have two substrates bonded together with one of the substrates comprising a micromirror array. The two substrates can be bonded at the wafer level after depositing a getter material and/or solid or liquid lubricant on one or both of the wafers. The wafers can be bonded together hermetically if desired, and the pressure between the two substrates can be below atmosphere.
Abstract:
Disclosed herein is a method of projecting images using light valves. Pixel patterns generated of the light valve pixels based on image data are projected at different locations at a time.
Abstract:
Disclosed herein is a method of projecting images using reflective light valves. Pixel patterns generated of the light valve pixels based on image data are projected at different locations at a time.
Abstract:
A spatial light modulator includes an upper optically transmissive substrate held above a lower substrate containing addressing circuitry. One or more electrostatically deflectable elements are suspended by hinges from the upper substrate. In operation, individual mirrors are selectively deflected and serve to spatially modulate light that is incident to, and then reflected back through, the upper substrate. Motion stops may be attached to the reflective deflectable elements so that the mirror does not snap to the bottom substrate. Instead, the motion stop rests against the upper substrate thus limiting the deflection angle of the reflective deflectable elements.
Abstract:
Disclosed herein is a micromirror array device package having a light blocking area for reducing unexpected light scattering from the surfaces of the posts.
Abstract:
A projection system is disclosed comprising a light source, a first reflector proximate the light source, a second reflector proximate the light source, a light pipe, a color sequencing device a spatial light modulator and a target. The color sequencing device preferably directs three or more colors onto the spatial light modulator at a time. Some light is reflected from the color sequencing device back through the light pipe and is again reflected at the reflector at the light source before returning to the light pipe and color sequencing device. The brightness of the projection system is thereby increased.