摘要:
System and methods for energy adaptive communications between medical devices are disclosed. In one example, a medical device includes a communication module configured to deliver a plurality of pulses to tissue of a patient, where each pulse has an amount of energy. A control module operatively coupled to the communication module, may be configured to, for each delivered pulse, determine whether the delivered pulse produces an unwanted stimulation of the patient and to change the amount of energy of the plurality of pulses over time so as to identify an amount of energy that corresponds to an unwanted stimulation threshold for the pulses. The control module may then set a maximum energy value for communication pulses that is below the unwanted stimulation threshold, and may deliver communication pulses below the maximum energy value during communication with another medical device.
摘要:
An electrical connector for detachably connecting an electrical lead to an implantable medical device includes a conductive housing and a plurality of spring contacts. The conductive housing extends from a proximal end to a distal end. The conductive housing has an interior surface forming a hollow cylinder. The plurality of spring contacts projects from the interior surface of the conductive housing and toward the proximal end. The plurality of spring contacts is at least partially contained within the conductive housing and configured to form an electrical connection to an electrical lead inserted within the conductive housing. The conductive housing and the plurality of spring contacts are integrally formed by an additive manufacturing process such that the electrical connector is a unitary structure.
摘要:
A cardiac rhythm management system includes a first implantable device such as a defibrillator and a second implantable device such as a leadless cardiac pacemaker. A programmer is configured to receive and display heart data emanating from the implantable defibrillator and from the leadless cardiac pacemaker. The heart data emanating from the leadless cardiac pacemaker is displayed in temporal alignment with the heart data emanating from the implantable defibrillator.
摘要:
Systems and methods for communicating between medical devices. In one example, a method for communicating between a plurality of medical devices in a medical device system comprises, with a first medical device, communicating a first message to a second medical device. The method further comprises, with the second medical device, receiving the first message, wherein the first message comprises a plurality of communication pulses. A first set of the plurality of communication pulses represent a synchronization portion of the first message. A second set of the plurality of communication pulses represent a relative device address portion of the first message. A third set of the plurality of communication pulses represent a command portion of the first message. A fourth set of the plurality of communication pulses represent a payload portion of the first message.
摘要:
Systems and methods for treating cardiac arrhythmias. One example medical device system for delivering electrical stimulation therapy to a heart of a patient may comprise a leadless cardiac pacemaker (LCP) implanted within a heart of a patient and configured to determine occurrences of cardiac arrhythmias, a medical device configured to determine occurrences of cardiac arrhythmias and to deliver defibrillation shock therapy to the patient, wherein the LCP and the medical device are spaced from one another and communicatively coupled, and wherein after the LCP determines an occurrence of a cardiac arrhythmia, the LCP is configured to modify the defibrillation shock therapy of the medical device.
摘要:
An implantable pulse generator includes a device housing containing pulse generator circuitry and a header connected to the device housing. The header includes a core assembly defining first and second lead bore cavities sized for receiving terminal pins of leads, first and second labels, and an outer layer. The first label is printed onto a surface of the core assembly proximate the first lead bore cavity and includes a first color. The second label is printed onto the surface of the core assembly proximate the second lead bore cavity and includes a second color different from the first color. The outer layer is overmolded over the core assembly so as to encapsulate the first and second labels and to allow access to the first and second lead bore cavities.
摘要:
An apparatus includes an implantable housing, a header mounted to the implantable housing and including a connector block cavity, and a connector block located within the connector block cavity, the connector block including a housing portion, a coil spring, and a metallic conductor connected around the coil spring and extending directly to a feedthrough.
摘要:
An apparatus includes an implantable housing, a header mounted to the implantable housing and including a connector block cavity, and a connector block located within the connector block cavity, the connector block including a plastic housing portion, a coil spring, and a metallic termination member connected to the coil spring and exposed outside the plastic housing portion.
摘要:
Systems and methods for implantable medical devices and headers are described. In an example, an implantable medical device includes a device container including an electronic module within the device container. A modular header core includes a first core module including a first bore hole portion of a first bore hole, the first bore hole portion configured to couple a first electrical component with the electronic module. A second core module includes a second bore hole portion of a second bore hole different than the first bore hole, the second bore hole portion configured to couple a second electrical component with the electronic module. The first core module is detachably engaged with the second core module. A header shell is disposed around the modular header core and attached to the device container.
摘要:
Embodiments herein relate to implantable systems for cancer treatment and related methods. In an embodiment, an implantable system for cancer treatment can be included having a therapy output circuit configured to generate an electrical output for one or more electrodes to create one or more electric fields. The implantable system can include control circuitry that causes the therapy output circuit to generate the one or more electric fields at frequencies between 10 kHz and 1 MHz within a bodily tissue. The one or more electric fields can be effective to prevent and./or disrupt cellular mitosis in a cell. The implantable system can further include a therapy zone temperature sensor. The implantable system can be configured to measure the temperature and/or record the temperature data of a patient over time. The temperature data can include tissue temperature and time stamps of the same. Other embodiments are also included herein.