Abstract:
A display panel and an electro-optical device thereof are provided. The display panel comprises a pair of substrates, at least one data line, at least three common lines, at least one scan line, at least one switch element, a common electrode, and a display media layer. The pair of substrates comprises a first substrate and a second substrate. The data line and the three common lines are formed on the first substrate. The data line and the common lines interlace to form a plurality of areas. Each of the areas comprises an electrode. The electrodes are connected to each other to form a pixel electrode. The scan line is formed on the first substrate and under an electrode of one of the areas. The switch element is formed under an electrode of one of the areas, and comprises a source connected to the pixel electrode, a drain connected to the data line, and a gate\ connected to the scan line. The common electrode is formed on the second substrate, with a display media layer disposed between the two substrates.
Abstract:
A pixel structure of a transflective liquid crystal display panel. The pixel structure has single cell gap design, but a coupling capacitor and a modulating capacitor are properly connected to the reflection electrode so as to modulate the voltage of the reflection electrode. Consequently, the transmission region and reflection region of the pixel structure have substantially consistent gamma curves.
Abstract:
The transflective LCD panel has many scan lines, data lines, and common electrodes, in which each data line includes a first data line section and a second data line section, and each common electrode has at least one first common electrode section. The scan lines and the second data line sections are made of a first conductive layer; and the first data line sections and the common electrodes are made of a second conductive layer. The first common electrode sections and the corresponding pixel electrodes are overlapped, thus providing the storage capacitance.
Abstract:
A pixel structure disposed on a substrate includes a gate, a patterned dielectric layer, a patterned semiconductor layer, a patterned metal layer, an overcoat layer and a transparent pixel electrode. The patterned dielectric layer and the gate covered thereby are disposed on the substrate. The patterned semiconductor layer on the patterned dielectric layer includes bumps and a channel above the gate. The patterned metal layer includes a source, a drain and a reflective pixel electrode connecting the drain. The source and the drain cover a portion of the channel. The reflective pixel electrode covers the bumps. The gate, the patterned dielectric layer, the patterned semiconductor layer and the patterned metal layer form a transistor on which the overcoat layer has a contact hole exposing a portion of the reflective pixel electrode. The transparent pixel electrode on the overcoat layer electrically connects the reflective pixel electrode through the contact hole.
Abstract:
A pixel unit having a display area is provided. The pixel unit includes a first substrate, a second substrate, a liquid crystal layer, and at least one ultraviolet light (UV) absorption pattern. The second substrate is disposed in parallel to the first substrate, and the liquid crystal layer is disposed between the first substrate and the second substrate. The UV absorption pattern is disposed between the first substrate and the second substrate. A part of the display area overlaps the UV absorption pattern to define at least one first alignment area, while the part of the display area which does not overlap the UV absorption pattern defines at least one second alignment area. The liquid crystal molecules of the liquid crystal layer present different pre-tilt angles in the first alignment area and the second alignment area.
Abstract:
The invention provides an LCD panel with main slits corresponding to alignment protrusions. The gate lines are shielded by the electrode portion and do not overlap the main slits. Because the gate line and the major slits do not overlap, the liquid crystal molecule arrangement of the liquid crystal layer is not affected by the operating voltage of the gate line.
Abstract:
A pixel structure of a transflective LCD panel includes a substrate, a data line and a scan, a thin film transistor containing an extending electrode, a first common electrode and a second common electrode, a transmissive pixel electrode, and a reflective pixel electrode forming a first coupling capacitor with the extending electrode and a second coupling capacitor with the second common electrode. The first and second common electrodes and the data line overlap with each other in an overlapping area, wherein the first common electrode is disposed between the second common electrode and the data line.
Abstract:
A liquid crystal display panel including a first substrate, a second substrate, scan lines, data lines, pixel unit sets, and a liquid crystal layer is provided. The scan lines, data lines, and pixel unit sets are disposed on the first substrate. A first gap is formed between two adjacent pixel unit sets. Each of the pixel unit sets includes pixel units, and a second main space is formed between two adjacent pixel units. Each of the pixel units includes an active device electrically connected to a scan line and a data line, and a transparent pixel electrode has slits and electrically connected to the active device. The width of the first gap is greater than that of the second gap.
Abstract:
A touch panel has a first substrate and a second substrate. The thickness in the non-sensor regions of the first substrate is greater than the thickness in the sensor regions of the first substrate. The second substrate includes first photo spacers and second photo spacers having substantially the same heights. The first photo spacers are structurally connected to the non-sensor regions of the first region of the first substrate, and the second photo spacers are positioned corresponding to the sensor regions of the first substrate that maintain a first gap with the first substrate.
Abstract:
A liquid crystal display (LCD) panel is provided. The LCD panel includes an active device array substrate, an opposite substrate, and a liquid crystal layer. The active device array substrate includes a plurality of pixel units, and each of the pixel units has a reflective area and a transmissive area. The opposite substrate is disposed above the active device array substrate and has a plurality of first alignment protrusions corresponding to the reflective area and a plurality of second alignment protrusions corresponding to the transmissive area. The first and the second alignment protrusions are positioned between the opposite substrate and the active device array substrate. Additionally, a height of the first alignment protrusions is greater than a height of the second alignment protrusions. The liquid crystal layer is disposed between the opposite substrate and the active device array substrate. The LCD panel has a high aperture ratio.