Abstract:
The present invention is a method of manufacturing an organic EL display device including a display part arranged with a plurality of pixels including an organic EL light emitting layer, and a terminal part arranged with a plurality of terminals each connected to the organic EL light emitting layer respectively, the method comprising forming a TFT drive circuit layer controlling the organic EL light emitting layer and forming the plurality of terminals connected to the TFT drive circuit layer on a first substrate; forming the organic EL light emitting layer connected to the TFT drive circuit layer over the TFT drive circuit layer; forming a sealing film over the organic EL light emitting layer; adhering a second substrate covering the display part in a position corresponding to the first substrate; forming a touch panel sensor substrate and an electrode layer over the second substrate; and exposing the plurality of terminals by etching a part of the sealing film.
Abstract:
An insulating layer is disposed in areas between pixel electrodes adjacent to each other so as to rest on peripheries of the pixel electrodes. An organic layer is disposed to include a common layer that continuously covers the pixel electrodes and the insulating layer. A common electrode is disposed on the organic layer. A sealing layer conducts sealing to cover the organic layer and the common electrode. The pixel electrodes have depressed portions whose upper surfaces are recessed on ends including the peripheries of the pixel electrodes. The common layer has depressed portions whose upper surfaces are recessed in correspondence with the depressed portions of the pixel electrodes. The common electrode has depressed portions whose upper surfaces are recessed in correspondence with the depressed portions of the common layer. The sealing layer is curved in correspondence with the depressed portions of the common electrode.
Abstract:
An organic electro-luminescent display device is characterized in being provided with a substrate which is formed from an insulation material, a plurality of pixels which are arranged in a matrix shape in a display region of the substrate, and an organic layer which is formed spanning an adjacent pixel out of the plurality of pixels and includes a luminous layer, where the organic layer includes an anisotropic layer with greater electrical conductivity in a perpendicular direction with respect to the substrate than the electrical conductivity in a direction along the substrate.
Abstract:
A sealing film includes a first inorganic layer that has, in a surface thereof, a convex portion corresponding to an upper surface of an element layer, a second inorganic layer that covers the first inorganic layer, and an organic layer disposed between these layers. The surface of the first inorganic layer includes a recurved area changed from an area around the convex portion to the convex portion, and a flat area surrounding the element layer. The flat area includes an outer peripheral area on an outer end of the first inorganic layer, and an inner peripheral area between the outer peripheral area and the recurved area. The organic layer has an end in the outer peripheral area, has another portion in the recurved area, and avoids the inner peripheral area. A part of the second inorganic layer contacts the first inorganic layer in the inner peripheral area.
Abstract:
Provided is a display device that even in the case where microlenses are formed to increase the light extraction efficiency, can decrease damage on an OLED caused by the production of the microlenses. The display device includes a first substrate; light emitting elements provided on the first substrate and located in correspondence with pixels arrayed in a matrix; a second substrate; a light collection layer provided on the second substrate and including, on the side facing the light emitting elements, at least one convex lens in correspondence with each of the pixels; and a light-transmissive layer that is provided between the first substrate and the second substrate so as to be in contact with the lens and has a refractive index lower than that of the light collection layer.
Abstract:
A display device includes: a resin layer on the circuit layer including a groove surrounding and separating a display area; light-emitting elements on an upper surface of the resin layer so as to emit light with luminances controlled by the currents; a sealing layer covering the light-emitting elements; a second substrate above the sealing layer; a sealing material provided between the sealing layer and the second substrate so as to surround the display area and the groove; and a filling layer surrounded by the sealing material between the sealing layer and the second substrate. The groove is formed along a line describing a shape that is inscribed in a rectangle and not in contact with corners of the rectangle as viewed in a direction vertical to the upper surface of the resin layer.
Abstract:
An organic electroluminescence display device includes: a lower electrode that is made of a conductive inorganic material and formed in each of pixels arranged in a matrix in a display area; a light-emitting organic layer that is in contact with the lower electrode and made of a plurality of different organic material layers including a light-emitting layer emitting light; an upper electrode that is in contact with the light-emitting organic layer, formed so as to cover the whole of the display area, and made of a conductive inorganic material; and a conductive organic layer that is in contact with the upper electrode, formed so as to cover the whole of the display area, and made of a conductive organic material.
Abstract:
An organic electroluminescence display device includes: a lower electrode that is made of a conductive inorganic material and formed in each of pixels arranged in a matrix in a display area; a light-emitting organic layer that is in contact with the lower electrode and made of a plurality of different organic material layers including a light-emitting layer emitting light; an upper electrode that is in contact with the light-emitting organic layer, formed so as to cover the whole of the display area, and made of a conductive inorganic material; and a conductive organic layer that is in contact with the upper electrode, formed so as to cover the whole of the display area, and made of a conductive organic material.
Abstract:
A display device is provided including a plurality of pixels, wherein the plurality of pixels is arranged in a matrix form, wherein each of the plurality of pixels has an emission region and a transparent region, and wherein the emission region has a light-emitting element, and the transparent region has at least a part of a storage capacitor having transparency and is covered with at least one electrode of the storage capacitor, a first electrode covers the plurality of pixels, a light-emitting layer is arranged below the first electrode, a second electrode is arranged below the light-emitting layer, and the storage capacitor includes the first electrode.
Abstract:
It is an object of the present invention to provide an image display device in which it is possible to adjust the spectrum of light emitted by pixels and adjust the chromaticity of the light emitted by the pixels. Provided is an image display device having a pixel region in which each pixel comprises a plurality of subpixels and the pixels are arranged in a matrix, wherein each of the subpixels includes a plurality of light-emitting layers overlapping each other with an electrode sandwiched therebetween, and the plurality of light-emitting layers each contain a quantum dot material and have different peak emission wavelengths from each other.