Abstract:
A voltage generator including an oscillator having an output, a charge pump having an input and an output, the input of the charge pump being coupled to the output of the oscillator, a smoothing capacitor, a resistor having an input end and an output end, wherein the input end is coupled to the charge pump and the output end is coupled to the smoothing capacitor, and a shorting element connected in parallel with the resistor and which, when turned on, causes the resistor to be at least partially bypassed, wherein the voltage generator is configured to supply voltage to a radio frequency (RF) switch via the smoothing capacitor, and a frequency of the oscillator is controlled to be faster during a switching period of the RF switch.
Abstract:
An power voltage generating unit for a radio frequency switch includes a first input and a second input respectively configured to receive a first control signal and a second control signal, wherein the first control signal and the second control signal are configured to control which one of a plurality of paths in the radio frequency switch is enabled, and at least one output, configured to output an auxiliary voltage, derived from at least one of the first control signal or the second control signal, that is used to operate the radio frequency switch. The power voltage may be a voltage used to power an inverting circuit used to enable a selected branch as an isolation branch or shunt branch.
Abstract:
A single-pole multi-throw switch includes a set of selection switches. The set of selection switches includes a set of primary switches, a first set and a second set of secondary switches. The primary set of switches includes a plurality of primary transistors coupled in series for transmitting radio frequency signals. The first set of secondary switches is coupled to the primary set of switches and includes a plurality of first secondary transistors coupled in series for transmitting the radio frequency signals when the primary transistors and the first secondary transistors are turned on. The second set of secondary switches is coupled to the primary set of switches and includes a plurality of second secondary transistors coupled in series for transmitting the radio frequency signals when the primary transistors and the second secondary transistors are turned on.
Abstract:
An power voltage generating unit for a radio frequency switch includes a first input and a second input respectively configured to receive a first control signal and a second control signal, wherein the first control signal and the second control signal are configured to control which one of a plurality of paths in the radio frequency switch is enabled, and at least one output, configured to output an auxiliary voltage, derived from at least one of the first control signal or the second control signal, that is used to operate the radio frequency switch. The power voltage may be a voltage used to power an inverting circuit used to enable a selected branch as an isolation branch or shunt branch.
Abstract:
A radio frequency (RF) switching module and a control method of the RF switching module are described. The RF switching module has 2 switches, and the control method includes starting to turn off a first switch of the RF switching module, starting to turn on a second switch of the RF switching module after the first switch is turned off for a first predetermined time, wherein starting to turn off the first switch and starting to turn on the second switch is finished during a transition period from a first mode to a second mode.
Abstract:
A fixed voltage generating circuit includes a current mirror, a differential pair, and a resistor coupled to the current mirror. A node of the resistor is coupled to a voltage source. The differential pair includes two resistors coupled to the voltage source to enable the differential pair outputting a stable output voltage.
Abstract:
An RF switch includes a transistor and a compensation capacitor circuit. The compensation capacitor circuit includes a first compensation capacitor and a second compensation capacitor of the same capacitance. The compensation capacitor circuit is used to improve voltage distribution between a control node and a first node of the transistor and between the control node and a second node of the transistor.
Abstract:
An amplification circuit includes an amplifier, a first mirror-branch circuit, a second mirror-branch circuit, a first variable current source, a second variable current source, and an operation amplifier. The amplifier can receive an operation current and an input signal, and output the amplified input signal. The first mirror-branch circuit and the second mirror-branch circuit are coupled to the amplifier. The first variable current source is coupled to the first mirror-branch circuit and provides a first reference current. The second variable current source is coupled to the second mirror-branch circuit and provides a second reference current. The operation amplifier is coupled to the first mirror-branch circuit, the second mirror-branch circuit and the amplifier. The first reference current and the second reference current are related to the operation current.
Abstract:
A switch device structure includes RF1-st and RF2-nd input terminals, RFA-th, RFB-th and RFC-th output terminals, P2A-th, P1B-th and P1C-th paths, and first and second common paths. The P2A-th path includes a first terminal, and a second terminal coupled to the RFA-th output terminal. The P1B-th path includes a first terminal, and a second terminal coupled to the RFB-th output terminal. The P1C-th path includes a first terminal, and a second terminal coupled to the RFC-th output terminal. The first common path is coupled to the RF2-nd input terminal and the first terminal of the P2A-th path. The second common path is coupled to the RF1-st input terminal, the first terminal of the P1B-th path, and the first terminal of the P1C-th path. The first and second common paths cross each other on different planes to form a crossover.
Abstract:
A radio frequency (RF) switch includes a signal terminal, a reference voltage terminal and a shunt switch path. The shunt switch path includes a first sub-shunt circuit and a second sub-shunt circuit. The second sub-shunt circuit includes a first transistor and a second transistor coupled in parallel. When switched to a first state, the RF switch has first impedance; when switched to a second state, the RF switch has second impedance; and when switched to a third state, the RF switch has third impedance. The first impedance, the second impedance, and the third impedance are different.