Abstract:
A method and system for minimizing battery power consumption of user equipment (UE) during inter-frequency cell discovery in heterogeneous network is disclosed. UE receives background scan configuration for specified frequency from the network and performs the background scan for detecting inter-frequency cell. The UE detects an inter-frequency cell on the frequency indicated in the background scan configuration, during the inactive time of DRX cycle. Further, UE indicates the physical cell identity of the detected cell to the network. Then the UE activates the normal measurement gap provided previously or the network configures normal measurement gap to the UE if not provided previously. Further, UE performs Reference signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ) measurements of the detected cell. Then the UE reports these measurements to the network when the measurement report event condition is satisfied and the network handovers the UE to the detected cell.
Abstract:
A method for reducing consumption of battery power of User Equipment (UE) during inter-frequency cell detection in a Heterogeneous Network (HetNet) is provided. The method includes receiving an indication from a serving cell operating on a first frequency layer about presence of a beacon signal transmission on the first frequency layer from a non-serving cell, an actual data transmission and reception of the non-serving cell occurs on a second frequency layer, determining whether the indication satisfies at least one triggering condition to initiate signal scanning on the first frequency layer for identifying the beacon signal transmission from the non-serving cell, scanning, when the received indication satisfies the triggering condition, the first frequency layer for identifying any beacon signal, decoding the beacon signal from the non-serving cell, and receiving assistance information from the serving cell to facilitate identification of the non-serving cell transmitting the beacon signals on the first frequency layer.