Abstract:
Methods and apparatuses are provided in which a user equipment (UE) receives a system information block (SIB) from a network. The UE identifies at least one downlink (DL) period based on a first uplink (UL)/DL configuration included in the SIB. The UE monitors a physical downlink control channel (PDCCH) during the at least one DL period using a discontinuous reception (DRX) operation. The UE obtains downlink control information (DCI) for indicating at least one second UL/DL configuration as a format for one or more time intervals from the monitored PDCCH. The UE determines the format for the one or more time intervals based on the obtained DCI. The monitoring of the PDCCH includes monitoring the PDCCH in an active time of a DRX cycle. The active time includes a time when the UE performs continuous reception.
Abstract:
A method and an apparatus are provided for monitoring a physical downlink control channel (PDCCH) by a user equipment (UE) in a wireless communication system. The UE receives a system information block (SIB) from a network. The UE identifies at least one downlink (DL) period based on a first time division duplex (TDD) uplink (UL)/DL configuration included in the SIB; monitoring, by the UE, the PDCCH during the at least one DL period using a discontinuous reception (DRX) operation. The UE obtains information about at least one second TDD UL/DL configuration for one or more time intervals from the monitored PDCCH. The monitoring of the PDCCH comprises monitoring the PDCCH in an active time of a DRX cycle. The active time includes a time when the UE performs continuous reception.
Abstract:
A method and an apparatus for handling in-device coexistence interference in a user equipment are provided. The method includes receiving a list of non-serving Long Term Evolution (LTE) frequencies from a base station, configuring the non-serving LTE frequencies so as to perform a measurement on the configured non-serving LTE frequencies, and detecting a likelihood of in-device coexistence interference between at least one of the non-serving LTE frequencies and an Industrial, Scientific and Medical (ISM) frequency when an ISM activity is ongoing on the ISM frequency.
Abstract:
A method and an apparatus are provided for monitoring a physical downlink control channel (PDCCH) by a user equipment (UE) in a wireless communication system. The UE receives a system information block (SIB) from a base station. The UE identifies downlink (DL) subframes indicated by a first time division duplex (TDD) uplink (UL)/DL configuration in the SIB. The UE monitors the PDCCH transmitted from the base station on at least one DL subframe included in an active time of a discontinuous reception (DRX) cycle among the DL subframes. The UE obtains information about a second TDD UL/DL configuration from the monitored PDCCH. The UE monitors the PDCCH using the second TDD UL/DL configuration. The active time includes a duration corresponding to a number of at least one consecutive DL subframe at a beginning of the DRX cycle.
Abstract:
A method and system for uplink-downlink transmission of data packets in a wireless cellular network, during idle state of User Equipment (UE) using connectionless transmission is disclosed. The method establishes S1 common bearer between a Radio Access Network (RAN) node and Serving Gateway (SGW) and S5 common bearer between the SGW and Packet Data Network Gateway (PGW). The method defines a modified Uu interface between the UE and the RAN node. The method appends data packets with UE Identifier (ID) and routing information as packet header information to independently route data packets through wireless cellular network in a self-sustainable manner using the established common bearers and the modified Uu interface. The method secures data packets by providing integrity and ciphering protection. The method eliminates cost of dedicated bearer set up and reduces signaling overhead on the Uu interface thereby improving network efficiency and battery life of the UE.
Abstract:
The present disclosure provides a method and apparatus of handling in-device co-existence interference in a wireless communication environment. In one embodiment, a method includes detecting in-device co-existence interference between a LTE module and an ISM module in user equipment. The method further includes identifying subframes and corresponding HARQ processes in a set of subframes allocated to the LTE module which are affected by the ISM module operation. Additionally, the method includes reserving the remaining subframes and corresponding HARQ processes in the set of subframes for the LTE module operation. Furthermore, the method includes indicating to a base station that the remaining subframes and the corresponding HARQ processes are reserved for the LTE module operation to resolve the in-device co-existence interference. Moreover, the method includes receiving scheduling pattern indicating subframes and corresponding HARQ processes reserved for the LTE operation or derived DRX parameters from the base station based on the indication.
Abstract:
A method and system for providing selective protection of data exchanged between user equipment (UE) and network is disclosed. The selective protection is applied to a packet, a bearer or an access point name for secure exchange of data between the UE and the network. The network decides to apply selective protection based on configuration of network, configuration of UE, load in the network, battery power availability of UE, type of application running on UE. Further, the UE can request for selective protection based on the type of application running on UE and the battery level availability of the UE. The selective protection is either enabled or disabled dynamically by the network. Further, various mechanisms for applying selective protection for each bearer, each packet and each Access Point Name (APN) are disclosed. Additionally, the method for identifying a secured and a non secured bearer has also been disclosed.
Abstract:
A method and system for uplink-downlink transmission of data packets in a wireless cellular network, during idle state of User Equipment (UE) using connectionless transmission is disclosed. The method establishes S1 common bearer between a Radio Access Network (RAN) node and Serving Gateway (SGW) and S5 common bearer between the SGW and Packet Data Network Gateway (PGW). The method defines a modified Uu interface between the UE and the RAN node. The method appends data packets with UE Identifier (ID) and routing information as packet header information to independently route data packets through wireless cellular network in a self-sustainable manner using the established common bearers and the modified Uu interface. The method secures data packets by providing integrity and ciphering protection. The method eliminates cost of dedicated bearer set up and reduces signaling overhead on the Uu interface thereby improving network efficiency and battery life of the UE.
Abstract:
The present disclosure provides a method and apparatus of handling in-device co-existence interference in a wireless communication environment. In one embodiment, a method includes detecting in-device co-existence interference between a LTE module and an ISM module in user equipment. The method further includes identifying subframes and corresponding HARQ processes in a set of subframes allocated to the LTE module which are affected by the ISM module operation. Additionally, the method includes reserving the remaining subframes and corresponding HARQ processes in the set of subframes for the LTE module operation. Furthermore, the method includes indicating to a base station that the remaining subframes and the corresponding HARQ processes are reserved for the LTE module operation to resolve the in-device co-existence interference. Moreover, the method includes receiving scheduling pattern indicating subframes and corresponding HARQ processes reserved for the LTE operation or derived DRX parameters from the base station based on the indication.
Abstract:
A method and system for uplink-downlink transmission of message in a network. The method includes establishing, by a user equipment (UE), a security context for data transmission between the UE and a serving gateway in the network; generating, by the UE, in an idle mode, a data message including an encrypted data packet, the encrypted data packet being generated by encrypting a data packet to transmit to the serving gateway based on the security context; transmitting, by the UE, in the idle mode, to a base station (BS), a random access channel (RACH) message including a UE identifier (ID); receiving, by the UE, in the idle mode, from the BS, a contention resolution message including grant information for an uplink (UL) transmission; and transmitting, by the UE, in the idle mode, to the BS, the data message including the encrypted data packet.