摘要:
Methods of reducing power consumption of networked devices are described. When a main processor and associated hardware in a computing device is powered down, a processing element, with lower power consumption than the main processor, performs networking functions on behalf of the main processor. The processing element monitors events and wakes the main processor when defined criteria are satisfied. In an embodiment, these network functions may be to maintain existing network connections and/or establish new network connections and the defined criteria may relate to messages received by the device which are analyzed by the processing element running the application layer code and these criteria may be configurable by a user of the device.
摘要:
Candidates that are potentially responsible for user-perceptible network problems may be inferred. In an example embodiment, a system includes an inference engine to produce a list of candidates that are potentially responsible for user-perceptible network problems, with the candidates being network components that may include both services and network elements. A response to a service request may be a non response, an incorrect response, an untimely correct response, or a timely correct response. The user-perceptible network problems may include the untimely correct response as well as the non response and the incorrect response. In another example embodiment, a method includes monitoring a network and producing a list of candidates that are potentially responsible for user-perceptible network problems. The candidates of the list may include both services and network elements of the monitored network.
摘要:
The subject invention relates to a system and/or methodology that provide improved wireless networking performance by dynamically adapting the channel width. A dynamic adaptation component adjust the channel width based on at least one characteristic of a wireless network, the characteristics can include but are not limited to range, power consumption, throughput, signal to noise ratio (SNR), resilience to delay spread, data rate, and capacity. Additionally, an optimization component can determine an optimum channel width.
摘要:
Dynamic time-spectrum block allocation for cognitive radio networks is described. In one implementation, without need for a central controller, peer wireless nodes collaboratively sense local utilization of a communication spectrum and collaboratively share white spaces for communication links between the nodes. Sharing local views of the spectrum utilization with each other allows the nodes to dynamically allocate non-overlapping time-frequency blocks to the communication links between the nodes for efficiently utilizing the white spaces. The blocks are sized to optimally pack the available white spaces. The nodes regularly readjust the bandwidth and other parameters of all reserved blocks in response to demand, so that packing of the blocks in available white spaces maintains a fair distribution of the overall bandwidth of the white spaces among active communication links, minimizes finishing time of all communications, reduces contention overhead among the nodes contending for the white spaces, and maintains non-overlapping blocks.
摘要:
Methods of reducing power consumption of networked devices are described. When a main processor and associated hardware in a computing device is powered down, a processing element, with lower power consumption than the main processor, performs networking functions on behalf of the main processor. The processing element monitors events and wakes the main processor when defined criteria are satisfied. In an embodiment, these network functions may be to maintain existing network connections and/or establish new network connections and the defined criteria may relate to messages received by the device which are analyzed by the processing element running the application layer code and these criteria may be configurable by a user of the device.
摘要:
Techniques for enhancing throughput capacity and/or bandwidth distribution fairness among APs in a wireless network are described. Specifically, a channel frequency profile which includes a center frequency and channel-width (i.e., channel bandwidth) is dynamically assigned to each of one or more APs in a wireless network. The assigned channel frequency profile for each AP is based, at least in part, on the current composition of the wireless network including, its topology and traffic load distribution. In this regard, each AP's channel frequency profile can be continuously or periodically changed such that the entire available frequency spectrum is effectively utilized and/or interference between APs is avoided or limited. This, in turn, enhances the throughput capacity and/or bandwidth distribution fairness of the wireless network.
摘要:
Implementation of opportunistic use of stations in a wireless network as repeaters is described. In one implementation, a station detects the existence of rate anomaly in a wireless network. In response to the rate anomaly, the station may transform into a software repeater for certain other neighboring stations. The repeater function allows for the relaying of packets sent by these neighboring stations to the access point and vice versa. The other neighboring stations, owing to their relative proximity to the repeater station, transmit data at a higher rate to the repeater station. Thus, the removal of the slower stations reduces clogging of the access point and increases the overall data rate within the wireless network. Further, a zero-overhead network coding protocol may be implemented in conjunction with the repeater function to increase capacity of the wireless network.
摘要:
Methods are described for using collaboration of neighboring wireless devices to enable location of disconnected wireless devices and rogue wireless access points. A central server computes the locations of the neighboring clients and uses those locations to estimate the location of a disconnected client. These techniques may take advantage of the beaconing and probing mechanisms of IEEE 802.11 to ensure that connected clients do not pay unnecessary overheads for detecting disconnected clients. Methods are also described for detecting and locating rogue devices by collaboratively collecting information from neighboring devices and comparing the information to a database.
摘要:
Methods are described for using collaboration of neighboring wireless devices to enable location of disconnected wireless devices and rogue wireless access points. A central server computes the locations of the neighboring clients and uses those locations to estimate the location of a disconnected client. These techniques may take advantage of the beaconing and probing mechanisms of IEEE 802.11 to ensure that connected clients do not pay unnecessary overheads for detecting disconnected clients. Methods are also described for detecting and locating rogue devices by collaboratively collecting information from neighboring devices and comparing the information to a database.
摘要:
An environment is described in which a processing system provides application-level usage information to users. In one scenario, for example, the processing system may provide personal usage information to a user who is operating a user device. The personal usage information itemizes the amount of data (and/or other resources) that has been consumed by each application run by the user device. In another scenario, the processing system may provide expected usage information associated with at least one candidate application provided by a marketplace system. The expected usage information describes an expected consumption of data (and/or other resources) by the candidate application upon running the candidate application by the user device. The processing system can tailor the expected usage information that it sends to a particular user based on user profile data. The user profile data describes a manner in which users operate applications.