摘要:
When using a spectral endoscope, the spectral characteristic can be precisely set to be suitable for use conditions. There is provided a spectral endoscope (1) comprising: a channel (3) arranged along a longitudinal direction in an insertion unit to be inserted into a body cavity; an image pickup section (8) which captures an image in a vicinity of the distal end of the insertion unit (2); a variable spectral section (7) capable of changing the wavelength of light to be incident into the image pickup section (8); a reference light member (10) which emits light of a known wavelength characteristic, or has a known absorption characteristic, and is to be introduced into a field-of-view range of the image pickup section (8) through the channel (3); a control unit (11) which controls the image pickup section (8) to capture an image of the reference light member (10) that has been introduced through the channel (3), while controlling the variable spectral section (7) to change the wavelength of light to be incident into the image pickup section (8); and a calibration unit (12) which calibrates the spectral characteristic of the variable spectral section (7) according to the image of the reference light member (10) that has been captured by the image pickup section (8).
摘要:
A first detection unit and a second detection unit detect the light that is incident from the direction where a screen is to be located. A controller determines whether the screen is located at a recommended position based on output signals from the first detection unit and the second detection unit. When the screen is located at the recommended position, the controller controls the projection display apparatus so as to be in the state where a significant image can be projected. The controller may determine whether the screen is located at the recommended position and in a normal state based on the output signals. When the screen is located at the recommended position and in a normal state, the controller may control the projection display apparatus so as to be in the state where a significant image can be projected.
摘要:
Desired spectral characteristics are obtained by bringing reflection films sufficiently close together while avoiding optical contact between the reflection films. Provided is a variable spectral element (1) that includes a pair of optical substrates (2,3) that oppose each other with a gap therebetween; two mutually opposing reflection films (5) respectively disposed on the opposing surfaces of the optical substrates (2, 3); two mutually opposing sensor electrodes (6) that are disposed respectively on the sides where the reflection films (5) are disposed, and that form a distance sensor that detects the distance between the optical substrates (2,3); and an actuator (4) that changes the distance between the optical substrates (2, 3) by relatively moving the optical substrates (2, 3); wherein the distance between the opposing surfaces of the two reflection films (5) is larger than the distance between the opposing surfaces of the two sensor electrodes (6).
摘要:
An endoscope is disclosed that provide selection of each illumination mode of four different illumination modes, with one of the four different illumination modes being a mode which sequentially transmits very narrow wavelength ranges at three different wavelength regions within the visible spectrum.
摘要:
Desired spectral characteristics are attained by making reflection films close enough. A variable spectroscopy device (1) has a pair of optical substrates (2, 3) opposing each other with an interval therebetween, two reflection films (5) opposing each other which are respectively disposed on opposing surfaces of the optical substrates (2, 3), two sensor electrodes (6) opposing each other which are disposed on the same surfaces as the reflection films (5) and which constitute an interval sensor for detecting an interval between the optical substrates (2, 3), and an actuator (4) which relatively moves the optical substrates (2, 3) and changes the interval between the optical substrates (2, 3). A distance between the opposing surfaces of the two sensor electrodes (6) is longer than a distance between the opposing surfaces of the two reflection films (5).
摘要:
A mirror unit is operable to reflect light from a lens unit for projection in such a manner that, assuming that a light guiding optical system is divided into two areas with respect to a center axis of light combined by a light combining section such as a dichroic prism, a divided area having a smaller width in a direction perpendicular to the center axis is located on the side of a projection plane as a screen. The mirror unit includes e.g. a bending mirror for bending an optical path of light through the lens unit, and a curved mirror for projecting the light reflected on the bending mirror onto the projection plane.
摘要:
A projection display device comprises: a light source; liquid crystal panels disposed corresponding to R light, G light and B light; a light guiding optical system for guiding R light, G light and B light among light from the light source to respective corresponding liquid crystal panels; a dichroic prism for synthesizing the R light, G light and B light modulated by the liquid crystal panels; a projection optical system having a curved mirror for enlarging and projecting the light synthesized by the dichroic prism; and a bending mirror. A placement plane for optical members is orthogonal to a projection plane (screen surface), and shorter sides of optical members forming the liquid crystal panels and the light guiding optical system are placed on the placement plane.
摘要:
A capsule endoscope is disclosed having an illumination means, an imaging system that includes an objective optical system, and a transparent cover. The invention is characterized by one of: (1) the transparent cover has a larger radius of curvature in a central region of the field of view of the objective optical system than the radius of curvature of the transparent cover in a peripheral region of the field of view of the objective optical system, or (2) the imaging system has a different near point of focus distance for a central region of the field of view than the near point of focus distance of a region that is peripheral to the central region of the field of view and the objective optical system includes a meniscus lens element of positive refractive power and a plano-convex lens element.
摘要:
A metallic container closure comprising a shell of a thin metal sheet having a circular top panel wall 7 and a skirt wall 9, and a synthetic resin liner arranged in the shell, the skirt wall 9 having a thread-forming region and an annular groove 17 positioned at an upper end portion of the thread-forming region, wherein an internal pressure release line A extending in the circumferential direction is arranged in the skirt wall 9 at a portion over the annular groove 17, and annular bead 30 is arranged so as to pass through between the internal pressure release line A and the annular groove 17. The metallic container closure effectively releases the gas when the pressure in the container is elevated and effectively prevents the skirt wall from being deformed at a portion where the internal pressure release line A is formed when it is being wrap-seamed with the mouth-and-neck portion of the container.
摘要:
The present invention provides a chain alignment mechanism of a transmission for a bicycle which includes a drive sprocket wheel which is rotatably driven by a crankshaft, a driven sprocket wheel which is drivably connected with an output shaft which is rotated in an interlocking manner with a drive wheel of the bicycle, and an endless chain which is wound around the above-mentioned drive sprocket wheel and the above-mentioned driven sprocket wheel, wherein even when the chain of the transmission for the bicycle is deflected or slackened due to a driving manipulation of the bicycle, the vertical vibration of the bicycle or the like, the chain is reeled in the drive sprocket wheel in a row in an aligning manner. A chain guide member is arranged on an endless-chain-reel-in side of the above-mentioned drive sprocket wheel.