Abstract:
A method of manufacturing a cylindrical battery case includes performing an ironing process, which is one of the processes of manufacturing the battery case, a plurality of times in order to decrease the surface roughness of the battery case, thereby improving the corrosion characteristics of the battery case. The surface roughness of the cylindrical battery case is decreased by performing a thickness reducing process when a process for forming the outer circumferential surface of a body of the cylindrical battery case is performed at the time of manufacturing the cylindrical battery case. In addition, corrosion characteristics are improved for respective values of the surface roughness.
Abstract:
The invention relates to the use of an acidic aqueous composition for pretreating cans, wherein an inorganic-organic conversion layer is formed in the course of the pretreatment, said conversion layer, as such, offering an excellent adhesive base for wax which improves sliding of the formed can and for the subsequent coating. The invention relates to a wet-chemical pretreatment method in which a can cylinder is first contacted with an acidic aqueous composition that contains water-soluble inorganic compounds of Zr, Ti, Si, Hf or Ce, and water-soluble polymers comprising carboxyl groups or hydroxyl groups; and subsequently is contacted with an aqueous wax dispersion. The invention further relates to an acidic aqueous composition suitable for the pretreatment method comprising water-soluble polymers selected from condensation products of glycoluril and aldehydes. The invention further relates to a method for producing can cylinders, said method including the pretreatment according to the invention.
Abstract:
A method is provided for producing a hot-formed component, in particular a sheet-metal component made of steel, aluminum, magnesium or a combination of the materials. The method includes the acts of: heating a semifinished product, in particular a sheet-metal blank or a pre-shaped sheet-metal component, inserting the semifinished product into a molding tool, and quenching the semifinished product in the molding tool, wherein a change is made to the microstructure of the material at least in one portion. Before the insertion of the semifinished product into the molding tool, an insulating device is applied in at least one predetermined region of the semifinished product. The insulating device is connected in a form-fitting, integral and/or force-fitting manner to the semifinished product.