Abstract:
A high frequency tubular ozonizer in which low voltage and high voltage electrodes are coaxially disposed metal pipes. The high voltage electrode is made detachable, and a portion of the electrode disposed in a discharge gap, is coated with a dielectric. The low voltage electrode is cooled directly with a coolant flow. The ozonizer has a reliable centering device, due to which the low voltage and high voltage electrodes can be easily arranged coaxially. Low and high voltage units, in the ozonizer, can be easily assembled or taken apart. To increase the operating capacity ozonizers can be either coupled by means of common pipelines to form multielement installations or they can be coupled in a common housing.
Abstract:
A TUBULAR-SHAPED OZONIZER OF THE TYPE EQUIPPED WITH A COOLED INNER ELECTRODE AND A DIELECTRIC TUBE CONCENTRICALLY ARRANGED BETWEEN THE INNER ELECTRODE AND AN OUTER ELECTRODE. THE TUBULAR-SHAPED INNER AND OUTER ELECTRODES AND THE DIELECTRIC ELECTRODE ARE HELD AND MAINTAINED IN SPACED RELATIONSHIP FROM ONE ANOTHER BY ELECTRICALLY INSULATING CLOSURE CAP MEMBERS MOUNTED AT THEIR ENDS. ACCORDING TO THE INVENTION, THE SPACE BETWEEN THE INNER ELECTRODE AND THE OUTER ELECTRODE WHICH IS OF SUBSTANTIALLY CIRCULAR-SHAPED CROSS-SECTIONAL CONFIGURATION IS SUBDIVIDED BY THE DIELECTRIC TUBE INTO AN OUTER DISCHARGE
COMPARTMENT AND AN INNER COOLING COMPARTMENT. THE DISCHARGE COMPARTMENT AND COOLING COMPARTMENT COMMUNICATE BY MEANS OF SPACED HOLLOW COMPARTMENTS OF THE CLOSURE CAPS WITH CONDUIT CONNECTIONS PROVIDED AT SUCH CLOSURE CAPS FOR SUPPLYING THE DISCHARGE COMPARTMENT WITH AIR AND THE COOLING COMPARTMENT WITH A COOLING FLUID MEDIUM.
Abstract:
An apparatus comprising a cold-plasma ozone generator, the ozone generator comprising: a non-arcing non-coronal ozone production cell capable of generating ozone; the ozone production cell having a pair of electrodes placed on two sides of the production cell and spaced apart by an electrode gap, and a dielectric layer on each of the electrodes facing inward into the ozone production cell; a high-voltage pulse generator attached to the electrodes and configured for producing a glow discharge cold plasma between the electrodes, the high-voltage pulse generator being able to produce sufficient voltage to generate the glow discharge cold plasma; a cooling system attached to each of the electrodes; and an oxygen source adapted to provide gas flow through the production cell in the gap between the pair of electrodes that efficiently generates ozone in the cold plasma, wherein the dielectric layers are intimately and directly bonded to each of the electrodes.
Abstract:
According to one embodiment, an ozone generation device includes a first electrode unit, a second electrode unit, a fuse and a fuse holder. The first electrode unit is provided on an inner face of a discharge tube. The second electrode unit is provided outside the discharge tube at an interval. The second electrode faces the first electrode unit. A diameter of the outer face of the fuse is smaller than a diameter of the inner face. At least a part of the outer face is positioned inside the discharge tube. The fuse holder is interposed between the discharge tube and the fuse, includes the outer periphery and an inner periphery and is provided with a first opening and a second opening. The outer periphery extends in an arc along the inner face to come into contact with the inner face. The inner periphery extends in an arc along the outer face to come into contact with the outer face.