Abstract:
A method of manufacturing a corona discharge device suitable for use as an ozonizer capable of producing a controlled small amount of ozone throughout a prolonged service life. A foreproduct of corona discharge device (50) is first prepared which is provided with first and second planar electrodes (54; 56) capacitively coupled with each other by a third floating electrode (64) which is coated by a protective layer (68) of chemically-resistive electrically-insulatingmaterial. A high frequency alternating voltage having a voltage level higher than an initial minimum flashover voltage level of the foreproduct is then applied until the protective layer is aged. Aging of the protective layer is effective in lowering the initial minimum flashover voltage of the final product thus obtained as well as in reducing any fluctuation of the initial minimum flashover voltage that would otherwise occur from product to product. Various other features are also disclosed.
Abstract:
Apparatus for generating ozone with a high voltage source and at least two spaced plate electrodes with an interposed dielectric for forming at least one flow path, at least one of the plate electrodes being oscillatable, the plate electrode comprising two layers of electrically conductive material, whereof at least one layer is oscillatable, a resilient-attenuating material is placed between the two layers and the two layers are fixed in order to permit oscillations of the electrodes.
Abstract:
A corona discharge generator is disclosed, and includes a central tube of electrically conducting material circumscribed by a glass tube having an electrically conducting coating on its exterior surface and being sealed to the exterior surface of the central tube at opposites ends of the glass tube. The central tube is blocked within the longitudinal extent of the glass tube, and provided with holes between the interior of the central tube and the annular enclosure formed between the central tube and the glass tube, toward the opposite ends of the glass tube. Oxygen-containing gas flows along the central tube, out a first hole or holes to the enclosure, along the enclosure and back through one or more holes into the central tube on the downstream side of the blockage. A pulsed electrical signal is applied to the two tubular electrodes to effect a corona discharge within the enclosure, thereby producing ozone. An electrical circuit is disclosed to provide such a pulse signal of variable frequency whereby the rate of production of ozone may be selected.
Abstract:
Disclosed herein is an apparatus and method for the production of ozone gas comprising: a parallel resonance circuit formed by a high voltage transformer and a companion flexible polymeric corona discharge chamber which encloses an electrode and serves as both a passageway and reservoir for oxygen bearing gas, and a fluid counter-electrode, all contained within an appropriate enclosure. Said corona discharge chamber possesses an electrical reactance which can be varied in order to match the electrical reactance of a companion high voltage transformer so that the components resonate, thereby maximizing the transfer of energy to the corona discharge gap. The dwell of corona discharge is further enhanced by an electrostatic potential incorporated across said tube wall (electret effect). Heat formed in said discharge gap (detrimental to ozone production) is advantageously transferred to said fluid counter-electrode which also serves as an electrolytic connection between said high voltage transformer and said corona discharge chamber. Within said chamber, relatively large volumes of oxygen may be exposed to the high field density, ozone producing, resonating discharges as a consequence of its flexible and linear design. The apparatus and methods described herein permit and encourage the use of intermittent and cyclic application of resonating energy and therefore achieves an improved degree of electrical efficiency. The teachings of the present invention make practical the use of alternative sources of energy for the private and commercial generation of ozone gas.
Abstract:
A rotary ozonizer includes a drive motor for driving a rotor and an air compressor. The rotor is housed in a cylindrical body serving as an stationary electrode. The rotor is secured to a rotor shaft extending through the cylindrical body and rotating upon rotation of the motor through an insulating joint. The rotor serves as a rotary electrode, and provides an electrical discharge spaced relative to the cylindrical body. Electrical power supply portions are connected to the rotor and to the stationary electrode, and end plates are provided to cover open ends of the cylindrical body. The end plates rotatably support the rotor shaft. The motor, the insulating joint, the cylindrical body and the compressor are aligned coaxially in one of the embodiments of the present invention.
Abstract:
A TUBULAR-SHAPED OZONIZER OF THE TYPE EQUIPPED WITH A COOLED INNER ELECTRODE AND A DIELECTRIC TUBE CONCENTRICALLY ARRANGED BETWEEN THE INNER ELECTRODE AND AN OUTER ELECTRODE. THE TUBULAR-SHAPED INNER AND OUTER ELECTRODES AND THE DIELECTRIC ELECTRODE ARE HELD AND MAINTAINED IN SPACED RELATIONSHIP FROM ONE ANOTHER BY ELECTRICALLY INSULATING CLOSURE CAP MEMBERS MOUNTED AT THEIR ENDS. ACCORDING TO THE INVENTION, THE SPACE BETWEEN THE INNER ELECTRODE AND THE OUTER ELECTRODE WHICH IS OF SUBSTANTIALLY CIRCULAR-SHAPED CROSS-SECTIONAL CONFIGURATION IS SUBDIVIDED BY THE DIELECTRIC TUBE INTO AN OUTER DISCHARGE
COMPARTMENT AND AN INNER COOLING COMPARTMENT. THE DISCHARGE COMPARTMENT AND COOLING COMPARTMENT COMMUNICATE BY MEANS OF SPACED HOLLOW COMPARTMENTS OF THE CLOSURE CAPS WITH CONDUIT CONNECTIONS PROVIDED AT SUCH CLOSURE CAPS FOR SUPPLYING THE DISCHARGE COMPARTMENT WITH AIR AND THE COOLING COMPARTMENT WITH A COOLING FLUID MEDIUM.
Abstract:
To provide a compact ozone generator, films of polymeric material are employed as dielectrics in combination with flat, planar electrodes to produce ozone by silient electrical discharge in an oxygen containing gas stream. The electrodes and dielectrics are cooled by the gas stream which is recycled across the electrodes and dielectrics and through an external heat exchanger.
Abstract:
An ozone generator and an internal combustion engine with the ozone generator that can raise ozone additive rate of whole intake air, while suppressing pressure loss in the intake pipe from increasing. The internal combustion engine with an ozone generator includes a tubular intake pipe, through an inner region of which air flows, an ozone generator having an electrode plate that makes ozone and is disposed in the inner region or in the intake pipe, and a limiter that limits the flow of air in the inner region of the intake pipe; the electrode plate has a planar dielectric and high-voltage-side and low-voltage-side electrodes adhered and fixed to the dielectric and is formed in a shape of a plate extending in a direction in which air flows.
Abstract:
A system for performing ozone water treatment comprises a voltage supply circuit and a plasma eductor reactor. The voltage supply circuit includes an H-bridge controller and driver, a transformer, and an output port. The H-bridge controller and driver are configured to switch the electrical polarity of a pair of terminals. A primary of the transformer is connected to the H-bridge driver and controller. A secondary of the transformer connects in parallel with a first capacitor and in series with an inductor and a second capacitor. The output port connects in parallel with the second capacitor. The plasma eductor reactor includes an electric field generator, a flow spreader, and a diffuser. The electric field generator includes a pair of electrodes that generate an electric field. The flow spreader supplies a stream of oxygen. The diffuser supplies a stream of water. The streams of water and oxygen pass through the electric field.