Abstract:
A plasma display panel is constructed with a first substrate on which images are displayed, a second substrate disposed facing and spaced apart from the first substrate by a certain distance, a plurality of barrier ribs disposed between the first substrate and the second substrate to define a plurality of discharge cells, a plurality of discharge electrodes extending along lines of the discharge cells, a plurality of phosphor layers formed on interior walls of the discharge cells, an optical reflective layer disposed between the phosphor layers and the second substrate, and a discharge gas filling the discharge cells. The optical reflective layer reflects the visible light that is radiated toward the second substrate, along the image display direction, i.e., towards the first substrate. In addition, the barrier ribs are made from a material having a high optical transmittance that does not absorb the visible light.
Abstract:
A plasma display panel includes first and second substrates having a predetermined gap therebetween. Barriers are disposed between the first and second substrates to partition discharge cells and fluorescent layers are formed in the discharge cells. Address electrodes corresponding to the discharge cells extend in a first direction, and pairs of first and second electrodes extend in a second direction to cross the first direction. The address electrodes are on one of the substrates to correspond to the discharge cells. A dielectric layer covers the first and second electrodes, wherein the dielectric layer is colored with a first color, the barriers are colored with a second color having a subtractive mixture relation with the first color, and wherein the fluorescent layers include first fluorescent layers on the barriers and the discharge cells, and second fluorescent layers on the first fluorescent layers in the second color.
Abstract:
A back face panel in a plasma display panel is provided with barrier-rib portions, fluorescent barrier-rib portions including a mixed material of a barrier-rib material and a phosphor material and formed on side faces thereof, and a phosphor portion including the phosphor material and formed in a manner so as to cover the fluorescent barrier-rib portions, and each of barrier ribs is formed by each barrier-rib portion and each fluorescent barrier-rib portion, while a phosphor layer is formed by each phosphor portion and each fluorescent barrier-rib portion.
Abstract:
A plasma display panel production method is provided for producing a plasma display panel including a first substrate, a second substrate opposed to the first substrate, a barrier rib partitioning a space defined between the first and second substrates into a plurality of discharge spaces, and a seal frit portion provided between peripheral inner surface portions of the first and second substrates to seal the first and second substrates. The method comprises the steps of: forming a seal frit portion on one of the first and second substrates, and forming a barrier rib on the second substrate; combining the first substrate and the second substrate with a spacer of the same material as the seal frit portion being provided between the first substrate and a top of the barrier rib; pressing peripheral portions of the first and the second substrates from outside by a pressing member; heating the first and second substrates to a temperature not lower than a softening temperature of the seal frit portion while evacuating the space defined between the first and second substrates; and introducing a discharge gas into the space defined between the first and second substrates after the evacuating step.
Abstract:
A plasma display panel is disclosed. The plasma display panel includes a front substrate, a scan electrode and a sustain electrode positioned parallel to each other on the front substrate, an upper dielectric layer positioned on the scan electrode and the sustain electrode, a rear substrate positioned to be opposite to the front substrate, and a barrier rib that is positioned between the front and rear substrates and partitions a discharge cell. The upper dielectric layer includes a glass-based material and a cobalt (Co)-based material as a pigment. The barrier rib includes lead (Ph) equal to or less than 1,000 ppm (parts per million).
Abstract:
A transmission-type PDP capable of dealing with a moiré pattern which occurs on a display surface of a panel is provided. This PDP comprises: a rear unit having a pair of lateral display electrodes; a front unit having a longitudinal address electrode and including a display surface; and a barrier rib having transmittance and a phosphor layer. An electric potential of the address electrode is held constant in a display period. In this manner, a layer of the longitudinally striped address electrodes (first shielding layer) achieves an effect of shielding electromagnetic wave. Further, a layer of a laterally-striped electrode pattern (second shielding layer) may be arranged on a front surface of the panel. Superposing the above two shielding layers prevents the occurrence of a moiré pattern.
Abstract:
A plasma display panel and a method for manufacturing the same is disclosed. The plasma display panel includes a first substrate including a first electrode; a second substrate arranged to face the first substrate, the second substrate including a second electrode; and barrier ribs arranged between the first substrate and the second substrate to define a discharge cell, the barrier ribs being colored with at least two different pigments in mixtures.
Abstract:
A composition comprising a silicon-containing copolymer having a number-average molecular weight of 500 to 1,000,000, having SiO bond in the polymer and containing at least the structural units represented by the following general formulae (I) and (II) and, if necessary, one or more of the structural units represented by the following general formulae (III) to (VII) and a cross-linking agent is reacted at −20 to 100° C. for 1 to 3 hours. The resultant reaction composition is coated on a substrate and cured by heating to a temperature of 150° C. or above, for example, 250° C. to obtain a cured product of a silicon-containing copolymer which has a high heat resistance, a high light transmission, a low relative dielectric constant and a high chemical resistance and which has a strong mechanical strength and a good flexibility. wherein R1 to R6, R8 and R9 each independently represents an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkylamino group, an alkylsilyl group or an alkoxy group, R7 represents a divalent group, R10 represents a divalent aromatic group, and A represents NH or O.
Abstract:
In a plasma display panel having a discharge gas sealed in a gap between a front side substrate and a rear side substrate opposed to each other and having ribs partitioning a gas-sealed space into a discharge cell array arranged above an inner surface of one of the substrates, the rib includes an upper-layer rib and a lower-layer rib, and the upper-layer rib and the lower-layer rib are made of rib materials different from each other in resistance to etching, thereby allowing for formation of high ribs to enlarge the discharge space without affecting the upper-layer ribs when forming the lower-layer ribs.
Abstract:
The present invention provides a plasma display panel (PDP) with a structure that can reduce an outer reflection of an external light source and increase the reflection of visible rays emitted from the phosphor, remarkably increase the aperture ratio of the front panel, and remarkably reduce occurrence of a permanent residual image. The PDP includes: a transparent front panel; a rear panel disposed in parallel with the front panel; a plurality of opaque upper barrier ribs disposed between the front panel and the rear panel to define a plurality of discharge cells, and formed of a dielectric material; a lower discharge electrode and an upper discharge electrode disposed within the plurality of opaque upper barrier ribs so as to enclose the discharge cells; a plurality of lower barrier ribs disposed between the plurality of opaque upper barrier ribs and the rear panel; a phosphor layer disposed within a space defined by the plurality of lower barrier ribs; and a discharge gas disposed inside the discharge cells.