Abstract:
A semiconductor device may include the following elements: a semiconductor substrate, an insulator positioned on the substrate, a source electrode positioned on the insulator, a drain electrode positioned on the insulator, a gate electrode positioned between the source electrode and the drain electrode, a hollow channel surrounded by the gate electrode and positioned between the source electrode and the drain electrode, a dielectric member positioned between the hollow channel and the gate electrode, a first insulating member positioned between the gate electrode and the source electrode, and a second insulating member positioned between the gate electrode and the drain electrode.
Abstract:
Provided herein are approaches for improving ion beam extraction stability and ion beam current for an ion extraction system. In one approach, a source housing assembly may include a source housing surrounding an ion source including an arc chamber, the source housing having an extraction aperture plate mounted at a proximal end thereof. The source housing assembly further includes a vacuum liner disposed within an interior of the source housing to form a barrier around a set of vacuum pumping apertures. As configured, openings in the source housing assembly, other than an opening in the extraction aperture plate, are enclosed by the extraction aperture plate and the vacuum liner, thus ensuring appendix arcs or extraneous ions produced outside the arc chamber remain within the source housing. Just those ions produced within the arc chamber exit the source housing through the opening of the extraction aperture plate.
Abstract:
A semiconductor device may include the following elements: a semiconductor substrate, an insulator positioned on the substrate, a source electrode positioned on the insulator, a drain electrode positioned on the insulator, a gate electrode positioned between the source electrode and the drain electrode, a hallow channel surrounded by the gate electrode and positioned between the source electrode and the drain electrode, a dielectric member positioned between the hollow channel and the gate electrode, a first insulating member positioned between the gate electrode and the source electrode, and a second insulating member positioned between the gate electrode and the drain electrode.
Abstract:
A semiconductor device may include the following elements: a semiconductor substrate, an insulator positioned on the substrate, a source electrode positioned on the insulator, a drain electrode positioned on the insulator, a gate electrode positioned between the source electrode and the drain electrode, a hollow channel surrounded by the gate electrode and positioned between the source electrode and the drain electrode, a dielectric member positioned between the hollow channel and the gate electrode, a first insulating member positioned between the gate electrode and the source electrode, and a second insulating member positioned between the gate electrode and the drain electrode.
Abstract:
An apparatus for forming a vacuum in a sealed enclosure through an electrochemical reaction includes an electrochemical cell comprising a cathode and an anode supported on a solid electrolyte. The solid electrolyte is a Li-ion non-volatile electrolyte containing a dissolved metal salt. The cathode is constructed of a material with which lithium is known to form alloys. The anode is constructed of a lithium-ion containing material. The cell is operable to expose lithium metal on the cathode.
Abstract:
With respect to a vacuum tube having a reduced pressure vessel containing an electric discharge gas sealed therein, problems such as the lowering of discharge efficiency owing to an organic material, moisture or oxygen remaining in the reduced pressure vessel have taken place conventionally. It has been now found that the selection of the number of water molecules, the number of molecules of an organic gas and the number of oxygen molecules remaining in the reduced pressure vessel, in a relation with the number of molecules of a gas contributing the electric discharge allows the reduction of the adverse effect by the above-mentioned remaining gas. Specifically, the selection of the number of molecules of the above electric discharge gas being about ten times that of the above-mentioned remaining gas or more can reduce the adverse effect by the above-mentioned remaining gas.
Abstract:
A method for establishing a vacuum in a container includes the following steps. The container having an exhaust through hole defined therein is provided. A sealing cover including a connecting material located on the periphery of the sealing cover is provided. The sealing cover is spaced from the exhaust through hole for form at least gaps between the sealing cover and the exhaust through hole. A vacuum is established in the container. The connecting material is heated. The sealing cover covers the exhaust through hole and the connecting material is cooled. After that the container is packaged.
Abstract:
A method for manufacturing a PDP equipped with an exhaust tube (21) for evacuating a discharge space formed by arranging a front plate (22) and a back plate (23) oppositely and sealing the circumferential edge portions of the front plate and the back plate by sealant (31) and then filling the discharge space with discharge gas, the method comprising steps for arranging the sealing side of the exhaust tube around a thin exhaust hole (30) provided in the back plate through a tablet (32) formed of frit glass not containing sealing lead but containing bismuth oxide, assembling the front plate and the back plate while arranging them oppositely, mounting the exhaust pipe on an exhauster while directing the side connected with the exhauster downward, and performing the sealing at a predetermined sealing temperature.
Abstract:
A two chamber system with fill gas in one chamber and vacuum in the other provides a means of burning in one or more vacuum tubes while avoiding contamination from environmental gases. Vacuum tubes are often burned in after being sealed. Some processes burn-in the tubes before sealing them. The burn in process can take days and provide ample opportunity for environmental gases to contaminate the vacuum tube. The vacuum tube's fill tube passes through the vacuum chamber and into the fill gas chamber. Environmental gases leaking past the fill tube are evacuated by the vacuum. Similarly, fill gas leaking past the fill tube is also evacuated to vacuum. As such, the environmental gases are drawn away before contaminating the vacuum tube.
Abstract:
A plasma display panel is provided with a front substrate (22); a rear substrate (23) arranged to face the front substrate; and an exhaust tube (21). A discharge space is formed by sealing the circumference of the front substrate with the circumference of the rear substrate. The exhaust tube is connected to the rear substrate for exhausting the discharge space and filling the discharge space with a discharge gas. The exhaust tube is formed of a lead-free glass, and the ratio of its thickness to its outer diameter is 0.2 or more.