Abstract:
A metal-oxide-semiconductor (MOS) structure and method for its fabrication wherein all contact hole locations are simultaneously photolithographically defined in the gate oxide layer and openings are etched at these locations prior to the deposition of polysilicon, which is then etched to form interconnections and contacts. The completed structure contains a thick oxide layer which forms an insulating dielectric which surrounds and is self-aligned with the contact holes and obviates the need for the commonly used intermediate layer of phosphosilicate glass. The width of the polysilicon contacts to sources and drains is less than the width of the active channel formed in a conventional n-channel silicon gate Metal-Oxide-Silicon field-effect transistor so that significant misalignment in the channel length direction between the opening in the gate oxide at a contact hole location and the polysilicon pattern will not cause failure of individual field effect transistors (FETs). Thus, any non-etched gate oxide which remains under the polysilicon contacts will mask against diffusion of impurities, but will not block the flow of current between source and drain of the FET because the polysilicon source or drain contact does not extend across the entire channel width, thereby providing parallel current paths.
Abstract:
A tool for removing integrated circuit packages from the sockets of a burn-in board includes a plurality of parallel elongated prongs spaced from one another by an amount corresponding to the distance between adjacent rows of sockets on the burn-in board. A cover including a protective layer, such as of foam material, is mounted for pivotal movement with respect to the prongs. To remove the integrated circuit packages from the burn-in board following a burn-in procedure, the prongs are inserted along the longitudinal spaces between adjacent rows of sockets and the free end of the cover is latched to the prongs. The prongs are then lifted upwards, thereby to remove the integrated circuit packages from the sockets.
Abstract:
A method for fabricating an MOS integrated circuit having a refractory metal gate structure includes the formation of an insulating layer and a conductive refractory metal layer on a substrate, followed by the selective removal of portions of these layers to define the locations of source, drain, and other diffused regions. After the diffusion or implantation of the drain and source regions, using the refractory metal as a mask, the refractory metal, other than at the gate regions, is removed, and the portion of the underlying insulating layer that is thereby exposed is then etched away. An oxidizing step is performed to form a thick oxide region at those areas of the substrate not covered by the remaining portions of the refractory metal layer. Also disclosed is an MOS refractory metal gate MOS device fabricated by the method.
Abstract:
A Network Device (ND) may be configured to enable secure digital video streaming for HD (high definition) digital video systems over a standard network. The ND may operate in at least one of two modes, a co-processor mode and a stand-alone mode, and may provide at least three high level functions: network interface control (NIC), video streaming offload (VSO), and stand-alone video streaming (SVS). To seamlessly execute the VSO functionality, the ND may be configured to have two network stacks running synchronously on a single network interface having a single network address. The two network stacks may share the data traffic, while the Host network stack may act as a master, and configure the ND network stack to accept only specifically designated traffic, thus offloading some of the data processing to the processor configured in the ND. The ND network system may appear as an ordinary network controller to the Host, from which the user may configure the ND network driver to obtain/set the network address, configure the physical layer link speed and duplex mode, configure the multicast filter settings, and obtain and clear the network level statistics.
Abstract:
A system in which firmware residing in ROM may be upgraded without re-spinning silicon. A one-bit flag may be assigned for each patchable function representing a firmware upgrade. The first statement of each function may check its associated flag and determine if patch-code should be executed in place of the current function residing in ROM. If the flag is not set, the code may continue executing normally. If the flag is set, a function identifier may be placed into a global memory location, and an assembly language “jump” instruction may be executed, redirecting program control to a specified location in a volatile Scratch Read Only Memory (SROM) where the corresponding patched code may be stored. If more than one function is patched, the global identifier may be used to determine which patched function to execute. Using an assembly language “jump” instruction to redirect control results in the patched function's returning normally to its calling function once it has completed executing.
Abstract:
A method for transferring data between a host device and an external device is described. The external device has FAT32 file system. The method accepts parameters for an incoming data file from the host device. Further, the method allocates memory blocks for the incoming file data on the external device based on the parameters and indexes the allocated memory blocks on a memory index table to create a file footprint. The method reads the memory index table to identify the file footprint and receives the incoming file data from the host device.
Abstract:
An emulation system for charging any arbitrary portable device through a communication port on the portable device. The system includes a receptacle port for communicating with the portable device and a profile database for storing multiple charging profiles. Each charging profile including a set of parameters and at least one exit condition. Further, an emulation module applies a first charging profile to the portable device and monitors the set of parameters associated with the charging profile to identify an associated exit condition. Upon a determination that the exit condition for the first charging profile is met, the emulation module applies a next charging profile to the portable device.
Abstract:
Embodiments of the present disclosure provide a method and system for indicating an attachment and removal for a portable device. The method includes the steps of attaching the portable device to a charging system, delivering current to the portable device from the charging system, the delivered current is limited based on the portable device, replicating the current flowing through the first switch at a second switch, generating a voltage based on the current flowing through the second switch, comparing the voltage with a pre-defined threshold voltage, and indicating at least one of attachment or removal for the portable device based on the comparison.
Abstract:
A method and system for securing access to a storage device including one or more locked logical sections. The method includes providing an interface device including a first port connected to a computing system and a second port connected to the storage device. Further, the method includes receiving a unique identifier from a wireless device, and deriving a key from the unique identifier. Based on the derived key, the method unlocks a logical section in the storage device. The method may further store access permission rights for the locked logical sections in the interface device and unlock the logical section based on the access permission rights. Moreover, the method may further authenticate the identity of a user of the wireless device for unlocking the storage device.
Abstract:
A temperature sensor circuit and system providing accurate digital temperature readings using a local or remote temperature diode. In one set of embodiments a change in diode junction voltage (ΔVBE) proportional to the temperature of the diode is captured and provided to an analog to digital converter (ADC), which may perform required signal conditioning functions on ΔVBE, and provide a digital output corresponding to the temperature of the diode. DC components of errors in the measured temperature that may result from EMI noise modulating the junction voltage (VBE) may be minimized through the use of a front-end sample-and-hold circuit coupled between the diode and the ADC, in combination with a shunt capacitor coupled across the diode junction. The sample-and-hold-circuit may sample VBE at a frequency that provides sufficient settling time for each VBE sample, and provide corresponding stable ΔVBE samples to the ADC at the ADC operating frequency. The ADC may therefore be operated at its preferred sampling frequency rate without incurring reading errors while still averaging out AC components of additional errors induced by sources other than EMI.