Abstract:
Systems and methods for Multi-Radio Access Technology (RAT) Carrier Aggregation (MRCA) wireless wide area network (WWAN) assisted wireless local area network (WLAN) discovery, association, and flow switching are disclosed. One system comprises a control signaling module in a wireless device that includes a WWAN radio integrated with a WLAN radio. The control signaling module is configured to communicate WWAN control signaling and WLAN control signaling via a WWAN radio connection of the wireless device. A dynamic flow mapping module is configured to form a flow-mapping table to dynamically map service flows between the WWAN radio and the WLAN radio in the wireless device. A flow routing module is configured to route data packets to one of the WWAN radio and the WLAN radio in the wireless device based on the flow-mapping table to transmit and receive the data packets via the wireless device.
Abstract:
A system and method for handoff are provided. A mobile station performs a make-before-break handoff of a control channel between a serving and target base station and a break-before-make handoff of a traffic channel between the serving and target base stations. The traffic channel handoff is performed after the control channel handoff has completed.
Abstract:
Briefly, in accordance with one or more embodiments, two or more cells are configured to perform coordinated multipoint (CoMP) transmission for one or more user equipment devices with a common media access control (MAC) or a common radio resource control (RRC). Measurement information is received from the one or more user equipment devices. One or more of the cells may be deactivated, or one or more additional cells may be activated for coordinated multipoint transmission based at least in part on the measurement information.
Abstract:
Technology for configuring component carriers in carrier aggregation is disclosed. One method comprises scanning for an enhanced Node B (eNode B) with a user equipment (UE). An eNode B is selected by the UE. The UE is attached to an available carrier provided by the eNode B. The available carrier is designated as a Primary Component Carrier (PCC). The PCC is configured as a component carrier pair comprising a downlink primary component carrier (DL PCC) and an uplink primary component carrier (UL PCC). Mobility management and security input information is received at the UE from the eNode B via the DL PCC and the UL PCC.
Abstract:
Multi-carrier operational modes in a wireless communications protocol are described, along with a method of initializing a mobile station in order to prepare for multi-carrier operation and a carrier management method within a wireless communications protocol.
Abstract:
The various inventive embodiments relate to arrangement of information elements (IEs) for persistent and/or dynamic allocations in a wireless broadband network and include optimization techniques to eliminate the repetitive information fields from the downlink (DL)-Persistent-IEs, uplink (UL)-Persistent-IEs, DL-IEs, and UL-IEs. Elimination of repetitive information fields reduces MAP overhead. In addition embodiments relate to methods to use the same hybrid automatic repeat request (HARQ) region to contain persistent as well as non-persistent allocations. The use of the same HARQ region for persistent as well as non-persistent allocations further reduces the MAP overhead as it requires a single header to define the HARQ region instead of the two headers that are required to define two different HARQ regions: one for persistent allocation and the second one for non-persistent allocations.
Abstract:
Various embodiments of the invention determine and/or enhance the location of a wireless mobile station in a WiMAX network, and provide that location to a requesting device. Some embodiments produce more that one determination of the location, using different sources for the information, and combine the different determinations to produce an enhanced version of the location.
Abstract:
A system and method for handoff are provided. A mobile station performs a make-before-break handoff of a control channel between a serving and target base station and a break-before-make handoff of a traffic channel between the serving and target base stations. The traffic channel handoff is performed after the control channel handoff has completed.
Abstract:
A system and method for handoff are provided. A mobile station performs a make-before-break handoff of a control channel between a serving and target base station and a break-before-make handoff of a traffic channel between the serving and target base stations. The traffic channel handoff is performed after the control channel handoff has completed.