Abstract:
Disclosed herein is a control circuit for a movable mirror. The control circuit includes driving circuitry configured to drive the movable mirror with a drive signal to effectuate oscillating of the movable mirror, opening angle determination circuitry configured to determine an opening angle of the movable mirror, and amplitude control circuitry. The amplitude control circuitry is configured to a) first cause the driving circuitry to generate the drive signal as having an upper threshold drive amplitude, and b) then later cause the driving circuitry to generate the drive signal as having a nominal drive amplitude, as a function of the opening angle of the movable mirror being equal to a desired opening angle.
Abstract:
Disclosed herein is a circuit for determining failure of a movable MEMS mirror. The circuit includes an integrator receiving an opening angle signal representing an opening angle of the movable MEMS mirror, and a differentiator receiving the opening angle signal. A summing circuit is configured to sum the integrator output and the differentiator output. A comparison circuit is configured to determine whether the sum of the integrator output and differentiator output is not within a threshold window. An indicator circuit is configured to generate an indicator signal indicating that the movable MEMS mirror has failed based on the comparison circuit indicating that the sum of the integrator output and differentiator output is not within the threshold window.
Abstract:
A process for assembly of an integrated device, envisages: providing a first body of semiconductor material integrating at least one electronic circuit and having a top surface; providing a second body of semiconductor material integrating at least one microelectromechanical structure and having a bottom surface; and stacking the second body on the first body with the interposition, between the top surface of the first body and the bottom surface of the second body, of an elastic spacer material. Prior to the stacking step, the step is envisaged of providing, in an integrated manner, at the top surface of the first body a confinement and spacing structure that confines inside it the elastic spacer material and supports the second body at a distance from the first body during the stacking step.
Abstract:
A logarithmic pixel is formed by a photodiode connected to a semiconductor device that is operating based upon a sub-threshold. A logarithmic output is taken from an output node connected to the pixel via an amplifier. To calibrate the pixel, the photodiode is isolated by a switch and a ramp voltage is applied as reference voltage to the amplifier. The ramp voltage acts across the constant internal capacitance of the pixel to produce in-pixel a constant current for calibration purposes.
Abstract:
A method for attaching a sensor and a housing to opposite sides of a mounting substrate is provided. The sensor has a sensing face that includes a sensing area and at least one signal output contact thereon. The mounting substrate has a circuitry face and at least one signal input contact thereon. The mounting substrate also has an opening therethrough. The method includes positioning the sensing area over the opening so that the at least one signal output contact of the sensor makes contact with the at least one signal input contact of the mounting substrate. The mounting substrate receives the housing so that the housing and the sensor are in alignment.
Abstract:
A chip includes CPU (12), memories (13,14) for programs and data, peripheral units (18,19) for interacting with the outside world, and an internal RC oscillator (17) for providing clock signals. One of the peripheral units (18) includes a timer counter incremented at a frequency derived from the RC oscillator. The method does not try to change the frequency of the RC oscillator. Instead, an external calibration source (21) is connected to a capture input of the timer unit to provide a signal having a reference frequency, e.g. the mains frequency. The counter is sampled on active edges of that signal, and the sampled values are processed to derive a calibration ratio. After these calibration steps, a software correction is applied to parameters handled by programs stored in memory based on the calibration ratio to compensate for frequency variations of the RC oscillator.
Abstract:
A digital camera for capturing and processing images of different resolutions and a corresponding method for down-scaling a digital image are provided. The method includes forming an image of a real scene on an image sensor that is made up of a plurality of pixels arranged in a matrix. The method further includes addressing and reading pixels in the matrix to obtain analog quantities related to the pixels luminance values, converting the analog quantities from the pixels matrix into digital values, and processing the digital values to obtain a data file representing the image of the real scene. To reduce computation time and power consumption, the addressing and reading of the pixels includes selecting a group of pixels from the matrix, and storing the analog quantities related to the pixels of the selected group of pixels into an analog storing circuit. The stored analog quantities are averaged to obtain an analog quantity corresponding to an average pixel luminance value.
Abstract:
An image sensor has an array of pixels. Each column has a first and a second column line connected to a read-reset amplifier/comparator which acts in a first mode as a unity gain buffer amplifier to reset the pixels via the first lines, and in a second mode acts as a comparator and AD converter to produce digitized reset and signal values. The reset and signal values are read out a line at a time in interleaved fashion. Reset values are stored in a memory and subsequently subtracted from the corresponding signal values. The arrangement reduces both fixed pattern and kT/C noise.
Abstract:
A look-up table apparatus is provided for performing two-bit arithmetic operation including carry generation. The look-up table is modified to perform two concurrent combinatorial functions, or one function for an increased number of inputs. The look-up table of the present invention can implement two full adders or subtractors, or two-bit counters, for example. One portion of the modified look-up table provides two bits of a sum output, and another portion of the modified table provides a fast carry out signal for application to a next stage of an adder/subtractor/counter.
Abstract:
Lighting flicker in the output of a video imaging device is detected. The video imaging device has a main picture area divided into pixels for producing successive images at a frame rate. A series of signals are produced from at least one additional picture area adjacent the main picture area, with the additional picture area having a size substantially larger than a pixel. Each of the signals is a function of light incident on the additional picture area in a time period substantially shorter than that of the frame rate. A predetermined number of the signals are accumulated to form a series of compound samples, and the compound samples are filtered to detect components indicating the lighting flicker. The filtering is performed using a bandpass filter tuned to the nominal flicker frequency. The compound samples are formed at a sample rate which is a multiple of the nominal flicker frequency, and the filtering is performed by taking the fundamental output component of a radix-N butterfly.