Abstract:
A flexible lance drive device has at least one drive motor in a first portion of a housing and a drive axle projecting across a second portion of the housing carrying a cylindrical spline drive roller. A plurality of cylindrical guide rollers on fixed axles span across the second portion of the housing aligned parallel to the spline drive roller. An endless belt wrapped around the at least one spline drive roller and guide rollers has a generally smooth outer surface and a transverse splined inner surface having splines shaped complementary to splines on the spline drive roller. A bias member supports a plurality of follower rollers each aligned vertically above one of the at least one spline drive roller and guide rollers operable to press each follower roller toward one of rollers to frictionally grip a flexible lance hose when sandwiched between the follower rollers and the endless belt.
Abstract:
A guide tube pitch adjustment apparatus for aligning distal ends of lance guide tubes in registry with tube openings in a heat exchanger tube sheet is disclosed. A guide tube pitch clamp assembly carried within and supported from a housing. The pitch clamp assembly has at least two V-blocks fastened to a threaded rod. One V-block is fastened to a portion of the threaded rod having right hand threads, and another V-block is fastened to another portion of the threaded rod having left hand threads. Each of the V-blocks supports a portion of one of the guide tubes, and a cross bar clamp within the housing is oriented to span across the V-blocks and adjustably hold the portions of the guide tubes in a spaced relationship such that spacing between the distal ends of adjacent guide tubes may be adjusted by rotation of the threaded rod.
Abstract:
A flexible lance drive device is disclosed that has, in a compact housing, a drive motor between an inner and an outer wall, a linear array of pairs of driven upper and lower drive rollers outside the outer wall coupled to the drive motor via shafts extending through both of the inner and outer walls. Each driven roller is fastened to its shaft via a quick release device. A drive sprocket is fastened to each shaft outside the inner wall. The drive motor is coupled to each of the drive sprockets via a serpentine belt carried outside the inner wall. The lower driven rollers are rotatably carried by the inner and outer walls. The upper driven rollers are rotatably carried by a block positioned between the inner and outer walls and coupled to the lower driven rollers by a pair of parallel links releasably biased by a piston driven linkage.
Abstract:
A multiple flexible lance hose take-up drum apparatus or device in accordance with the present disclosure includes a base having three or more support legs and a hollow take-up drum assembly rotatably supported from the base. The drum assembly includes a hollow cylindrical shell, a bottom plate fastened to the shell, a high pressure fluid supply connection and a manifold positioned radially along a bottom plate of the shell for connection to one end of each of a plurality of flexible lance hoses. The base includes an L shaped support arm extending from the bases alongside the shell. A plurality of guide tubes are supported by the support arm and aligned over a rim of the shell for guiding flexible lance hoses into and out of the take-up drum assembly.
Abstract:
A flexible high pressure fluid cleaning lance drive apparatus includes a guide rail having a longitudinal axis adapted to be positioned within a boiler water box and aligned in a fixed position with respect to a central axis of the water box. A tractor drive module is mounted on the guide rail, a helix clad high pressure fluid hose drive module is mounted on the guide rail operable to propel a flexible lance helix clad hose through the drive module along an axis parallel to the guide rail longitudinal axis, and a right angle guide rotator module is mounted on the guide rail and connected to the tractor module for positioning a rotatable high pressure nozzle carried by the helix clad hose within a guide tube attached to the rotator module.
Abstract:
A frame apparatus for holding a flexible lance positioning mechanism adjacent to and spaced from a heat exchanger tube sheet includes an upper guide rail, a lower guide rail, a positioner rail supported from one of the upper and lower guide rails and guided by the other of the upper and lower guide rails, and a rail clamp assembly fastened to a portion of a tube sheet. This rail clamp assembly has a flat plate member fastened to the tube sheet, a base plate spaced from the flat plate by one or more threaded shafts, and one or more clamp fingers rotatably fastened to the base plate. Each clamp fingers is operable to rotate toward the base plate when the base plate is drawn against the flat plate or beam member by rotating the threaded shaft, thus drawing the rail securely to the flat plate of the clamp assembly.
Abstract:
A speed retarding device for a rotary nozzle includes a hollow cylindrical housing and a rotatable tubular shaft rotatably carried by the housing. The shaft has an enlarged drag sleeve portion carried in the housing and a shaft end extending through at least one end of the housing to receive a rotary nozzle thereon. A pair of support bearings support the drag sleeve portion of the shaft in the housing. An annular inner seal between each of the support bearings and the drag sleeve portion defines a cavity within the housing receiving a viscous fluid confined within the cavity. The support bearings are separated from the cavity confining the viscous fluid and an outer annular seal on the shaft adjacent each support bearing prevents environmental contamination such as water and debris from entry into the support bearings.
Abstract:
An apparatus for propelling a plurality of coil clad hoses simultaneously includes a plurality of modules. Each module includes a primary driven bull gear. A follower bull gear is rotatably fastened to a follower axle extending parallel to the drive axle and the follower bull gear meshes with the primary bull gear. A plurality of secondary bull gear/sprocket modules are fastened to each of the axles, each of the modules having a secondary bull gear having teeth extending to a first outer diameter and a sprocket gear having teeth extending a distance less than the first outer diameter. The secondary bull gear teeth of modules on the drive axle mesh with corresponding secondary bull gear teeth of modules on the follower axle to define between adjacent modules an opening width for receiving and passing therebetween a coil clad portion of a high pressure hose.
Abstract:
A flow path switching valve is disclosed that can be operated remotely simply by turning flow on and off. A mid portion of the body has at least one passage therein leading from a central axial bore to one or more external ports each having a tractor nozzle. The valve outlet connects the axial bore to a cleaning nozzle. A poppet member is received in the central axial bore. In a first position, the poppet member directs fluid flow through the outlet to the cleaning nozzle connected to the outlet. The poppet member, when in a second position, closes the central axial bore through the outlet end of the valve body and permits fluid flow through the tractor nozzles. Selection of the different flow paths is made by simply reducing flow through the valve below a predetermined fluid flow threshold and then increasing the flow rate above the threshold.