Abstract:
A display device includes a panel comprising at least one group of electrode terminals; at least one signal transfer unit having first signal transfer unit terminals that connect with electrode terminals of the at least one group of electrodes; and alignment mark units formed on the electrode terminals and the terminals of the signal transfer units respectively in order to align positions of the terminals of the signal transfer units with respect to the electrode terminals, wherein the alignment mark units overlap each other in a region in which the electrode terminals and the terminals of the signal transfer units are arranged. The signal transfer units can be electrically connected to electrode terminals at desired positions by forming alignment mark units, which allows the desired position to be found when the electrode terminals overlap the signal transfer units, in a region in which the grouped electrode terminals and the signal transfer units are arranged.
Abstract:
Exemplary embodiments relate to a plasma display panel device, including a substrate, discharge electrodes arranged on the substrate, and a plurality of short-circuit preventing units formed between terminals of each of the discharge electrodes, so as to prevent a short circuit between the terminals of adjacent discharge electrodes.
Abstract:
A plasma display device including a protective layer disposed adjacent to a front surface of a plasma display panel, a chassis base, wherein a front surface of the chassis base is disposed adjacent to a rear surface of the plasma display panel, circuit units disposed on a rear surface of the chassis base and a conductive member that electrically connects the protective layer to the chassis base, wherein the protective layer serves to filter electromagnetic radiation emitted from the plasma display panel.
Abstract:
A plasma display device includes a plasma display panel (PDP). A chassis base supports the PDP from a surface of the same opposite a surface that displays images, and a plurality of driving circuit boards are mounted on the chassis base. A front cabinet is positioned adjacent to the surface of the plasma display panel that displays images. Also, a back cover is positioned adjacent to a surface of the chassis base opposite the surface adjacent to the PDP and is integrally assembled to the front cabinet with the chassis base and the plasma display panel interposed therebetween. The plasma display device also includes thermoelectric semiconductor devices that are mounted within the back cover. The thermoelectric semiconductor devices act to discharge heat generated by the PDP and the driving circuit boards to outside the back cover.
Abstract:
A plasma display panel includes first and second substrates spaced apart from each other at a distance while proceeding substantially parallel to each other. The first and the second substrates have a display area and a non-display area. A plurality of address electrodes are formed on the first substrate, and covered by a dielectric layer. Main barrier ribs are arranged between the substrates to form discharge cells. Phosphor layer is formed with the discharge cells. A plurality of discharge sustain electrodes are formed on the surface of the second substrate facing the first substrate, and covered by a dielectric layer. Reinforcing barrier ribs are arranged at the non-display area while surrounding the display area, and connected to the main barrier ribs with an outer structure curved toward the outside of the substrates.
Abstract:
A Plasma Display Panel (PDP) includes: a front substrate and a rear substrate facing each other; a plurality of barrier ribs arranged between the front substrate and the rear substrate, defining a plurality of discharge cells where a discharge occurs, and including a plurality of recesses; a plurality of electrodes corresponding to the discharge cells and adapted to generate the discharge; a plurality of phosphor layers arranged within the discharge cells; and a discharge gas contained within the discharge cells.
Abstract:
A plasma display device includes a plate member arranged at a distance from a circuit substrate to allow air to pass between the plate member and the circuit substrate. The plate member includes an extension arranged at an angle to the plate member to deflect heat generated by the driving circuits through a hole in the plasma display device cover.
Abstract:
A plasma display panel including an upper substrate and a lower substrate facing each other; barrier ribs arranged between the upper and lower substrates to define a plurality of discharge cells together with the upper and lower substrates; a discharge sustain electrode pair extending along discharge cells arranged in a first direction, and including a scan electrode and a sustain electrode arranged in parallel with each other; a floating electrode arranged between the scan electrode and the sustain electrode and electrically floated; an address electrode extending in a second direction of crossing the first direction; a phosphor layer arranged in the discharge cells; and a discharge gas filled in the discharge cells.
Abstract:
Breakage of an IC included in a plasma display device can be prevented by a plasma display device including: a Plasma Display Panel (PDP); a chassis base attached the PDP on one side thereof and attached to a printed circuit board assembly on another side thereof; an Integrated Circuit (IC) package including an IC coupled between an electrode from the PDP and the printed circuit board assembly; and a cover plate attached to a chassis base interposing the IC package; and at least one of the chassis base and the cover plate includes at least one slit arranged in a vicinity of a portion corresponding to the IC.
Abstract:
A plasma display panel capable of preventing faulty discharge and non-uniform discharge by applying a uniform address voltage to all subpixels. This is done by neutralizing the negative surface potential of a zinc silicate green fluorescent material using YBO3:Tb as a positive surface potential material on the partition walls between the electrodes. Also, the thickness of this YBO3:Tb material and a lateral spacing between a scan electrode and the positive surface potential material are carefully selected to arrive at a design resulting in no faulty pixels. Grooves can also be formed in the tops of the partition walls so that the positive surface potential material filled therein does not mix with the neighboring flourescent material.