Abstract:
There is provided a mobile station device in a multi-hop system capable of realizing relay of communication of another station while suppressing increase of power consumption of the local station. In this device, at timing t1, a mobile station MS2 transmits data S2 destined to a base station BS1, to a mobile station MS1. The mobile station MS1 receives the data S2 and temporarily stores it in a buffer. The mobile station MS1 waits until timing t4 when the data S1 of the mobile station MS1 is to be transmitted. When this timing has come, the data S2 stored in the buffer is multiplexed with the data S1 of the mobile station MS1 and transmitted to the base station BS1.
Abstract:
Provided is a wireless communication device which can transmit an emergency signal without deteriorating data transmission efficiency. In the device, a modulating section (105) performs modulation processing to an emergency signal and generates an emergency signal symbol, an arranging section (106) arranges the emergency signal symbol at a frequency of a guard carrier wherein a normal signal is not arranged, a diffusion section (107) performs diffusion processing to the emergency signal symbol by using an emergency signal diffusion code, and a wireless transmission section (108) performs transmission processing to the diffused emergency signal symbol and transmits the symbol from an antenna (109).
Abstract:
A wireless communication apparatus and a wireless communication method wherein even when the permissible delay amount of data is small, the permissible delay thereof can be satisfied. A data type determining part (101) determines whether the delay of transport data or control information should be allowed or not. A pilot signal insertion control part (102) decides, based on pilot insertion interval information and allowable delay information, that a pilot signal is placed adjacently to data that is not allowed to delay. A multiplexing part (106) multiplexes encoded and modulated transport data with the pilot signal generated by a pilot signal generating part (105) in such a manner that realizes the placement decided by the pilot signal insertion control part (102).
Abstract:
There is disclosed a radio transmission device capable of improving the throughput. The radio transmission device (100) transmits a first signal and a second signal which are different from each other. In the radio transmission device (100), an FFT unit (103) subjects first data to an FFT process. A sub-carrier allocation unit (106) maps the first data which has been subjected to the FFT process and the second data into different frequencies. An IFFT unit (107) subjects the mapped signal to the IFFT transform. A transmission radio processing unit (109) transmits the signal which has been subjected to the IFFT processing, with a single carrier.
Abstract:
A wireless transmission device enabled to improve an error rate performance at a receiver, by acquiring at least one of frequency diversity effect and a time diversity effect while keeping the interference resistance which is acquired by diffusion. In this transmission device, a modulation unit (101) modulates data to create a modulation symbol having in-phase components and quadrature components. An IQ individual spreading unit (102) arranges the diffusion chips, which are obtained by spreading the modulation symbol, of the in-phase components and the quadrature components, in areas extending in diffusion domains set individually for the in-phase components and the quadrature components. An IQ combining unit (103) combines the arranged spreading chips of the in-phase components and the quadrature components.
Abstract:
A multicarrier communication method and a multicarrier communication apparatus used for the method for adjusting the arrangement in code block units according to the actual reception state of the multicarrier signal, when arranging code blocks generated through error correcting coding processing not only in the time axis direction but also in the frequency axis direction in order to improve an error correction rate of a multicarrier signal.
Abstract:
Disclosed is a wireless relay device wherein the number of stream multiplexes between a wireless transmission device and a wireless reception device can be increased without increasing the number of antennas for the wireless transmission device or the number of antennas for the wireless reception device. Specifically disclosed is a wireless relay device (100) for relaying and transmitting a signal between a wireless transmission device and a wireless reception device, which has Nrelay number (Nrelay is a natural number of 2 or more) of antenna ports, wherein a diversity reception unit (106) diversity-receives the signal which is transmitted from the wireless transmission device, and which has been modulated by the modulation multi-value number of M (where M=Nrelay 2) via the Nrelay number of antenna ports, a stream generating unit (112) divides the signal so as to generate Nrelay pieces of streams, modulation units ((114-1) to (114-Nrelay)) QPSK-modulate the Nrelay pieces of streams, and transmission RF units ((115-1) to (115-Nrelay)) transmit the N pieces of streams after modulation to the wireless reception device via the Nrelay number of antenna ports.
Abstract:
A wireless transmission apparatus that can accurately select an optimal modulation scheme on a per block basis in a multi-carrier communication system in which block division of subcarriers and adaptive modulation are performed. In this wireless transmission apparatus, a propagation path characteristics acquisition section acquires the average SNR and SNR variance for each block, which are estimated by a wireless reception apparatus, using received signals inputted from a reception RF section and outputs these to an assignment section. The assignment section selects a modulation scheme for each block based on the average SNR and SNR variance of each block inputted from the propagation path characteristics acquisition section and modulation sections modulate multi-carrier signals included in each block, with the modulation scheme for each block selected by the assignment section.
Abstract:
Provided is a base station capable of suppressing increase of overhead of allocation result report in frequency scheduling in multi-carrier communication and obtaining a sufficient frequency diversity effect. In the base station, encoding units (101-1 to 101-n) encode data (#1 to #n) to mobile stations (#1 to #n), modulation units (102-1 to 102-n) modulate the encoded data so as to generate a data symbol, a scheduler (103) performs frequency scheduling according to a CQI from each mobile station so as to uniformly allocate data to the respective mobile stations for a part of RB extracted from a plurality of RB, and an SCCH generation unit (105) generates control information (SCCH information) to report the allocation result in the scheduler (103) to the respective mobile stations.
Abstract:
To prevent relaying wrong information by determining whether a radio signal is to be relayed in accordance with a function of error detection in the radio signal. A relay station apparatus according to an aspect of the invention is a relay station apparatus which relays a radio signal between a transmission station and a reception station, including: a receiver which is configured to receive the radio signal from the transmission station; and a relay determination section which is configured, in accordance with a function of error detection in the radio signal received by the receiver, to determine whether the signal is to be relayed or not, based on a first channel quality indicating a channel quality from the transmission station to the relay station apparatus.